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INTRODUCTION 

One of the primary modes of failure of concrete structures such as 

pavements is durability failure caused by frost action in temperate climates. 

During the past four decades, a considerable amount of excellent research has 

been done to elucidate the mechanism of frost damage, and various methods 

have been proposed to evaluate the frost resistance of concrete. 

That frost damage to concrete is related to its pore structure is well 

known. Since 1940s, air entrainment has been used to affect the pore 

structure of concrete to protect it from frost damage. Although air 

entrainment has proved effective, it has not prevented frost damage in some 

cases. Among the proposed mechanisms of frost action on concrete, the 

hypothesis put forward by Powers [52] is the most widely accepted. Powers' 

model has been very successful in explaining the role of entrained air. 

According to his hypothesis, the failure of concrete during freezing is mainly 

due to hydraulic pressure. As water freezes, the volume increase upon 

freezing causes water to be expelled from the frozen pores to nearby empty 

pores, and the resistance to this flow results in the generation of hydraulic 

pressure. Entrained air is therefore incorporated into concrete to relieve this 

destructive pressure. Based on his hypothesis. Powers introduced the spacing 

factor to characterize frost resistance of concrete. 

Although Powers' model is useful, it can not explain the abruptness of 

the drop in frost resistance of concrete as the saturation level increases to 

near-saturated states. It is believed that concrete will be subjected to far 

greater stresses in near-saturated states because of the extrusion of ice to the 
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exterior of concrete. Therefore, the question is whether air entrainment 

minimizes the frost damage by reducing the internal stresses as in Powers' 

model or by protecting concrete from critical saturation. If the latter is the 

case, then rather than correlate frost resistance to air voids characteristics, a 

more rational approach would be to correlate the frost resistance to the 

reluctance of the concrete to become saturated. 

A new model was therefore proposed to provide a basic understanding of 

the freezing mechanism of pore water in concrete in near-saturated states 

[IS]. The model, also known as the two-stage model, is based on the plastic ice 

theory of capillary freezing and melting of pore water. According to this 

theory, ice forms a continuous plastic mass in a porous medium as a non-

wetting phase adjacent to capillary water, and the capillary freezing and 

melting occurs by virtue of movement of the ice/water interface along the 

capillary pore in one direction or another [20]. 

Extensive research in recent years has resulted in the introduction of 

various methods for evaluating the frost resistance of aggregate and concrete. 

Some of these methods are based on testing the aggregate or the concrete in a 

laboratory simulated freeze-thaw environment. Other methods are based on 

measuring the physical properties such as porosity, pore size distribution, 

absorption and length change, and correlating them with known 

performance. The ASTM recommended standard test method, designation C-666 

"Standard Test Method for Resistance of Concrete to Rapid Freezing and 

Thawing" [2], is considered to be the most widely accepted; however, it is 

tedious, time consuming, and labor intensive. This standard test method 
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represents extreme conditions of exposure which is not indicative of actual 

field conditions. 

The objectives of this research are two-fold: (1) to provide a basic 

understanding of the freezing mechanism of pore water in concrete in near-

saturated states; and (2) in the light of this understanding, to introduce a 

quick, simple, and economical method of predicting the frost resistance of 

concrete. 



www.manaraa.com

4  

LITERATURE REVIEW 

Freeze-Thaw Durability of Concrete 

Durability of concrete is generally defined as the ability to resist 

deterioration under weathering action, chemical attack, abrasion, and any 

other process of deterioration [1]. A durable concrete is able to perform its 

function satisfactorily without damaging changes in form, structure, and 

integrity under a given service condition. Although man has been able to 

produce concrete of good quality, as evidenced by many concrete structures 

that stand tall and sound, problems still exist. For more than half a century, 

continued research on concrete durability has produced a tremendous amount 

of knowledge on the cause of durability failures, and the methods of 

preventing and detecting them. This trend still continues. At this point it is 

appropriate to review some of the important work done by various researchers 

on concrete in the area of freeze-thaw durability. 

Perhaps the earliest study on the mechanism of frost action was done on 

building materials such as bricks and ceramic tiles. A review of this work was 

given by Butterworth [8]. He described the mechanism of formation and 

growth of ice lenses in these materials. Since then, various models have been 

proposed to explain the mechanism of frost action in porous materials; 

particularly in soil and concrete [9,10,19,52]. 

Collins [10] attributed the failure of concrete pavement to formation of 

ice lenses parallel to the cold surface. He noted the lamination of these ice 

lenses to be similar to those observed in soils during frost heave. Collins 

suggested that the mechanism of frost action in concrete may be similar to 

that which occurs in soils where the growth of ice lenses occurs 
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perpendicular to the outside surface. He postulated that if the expansive force 

caused by this growth of ice exceeds the tensile strength of concrete, it will 

cause delamination. Collins further developed a one surface freezing test to 

support his hypothesis. Rogers and Chojnacki [61] reported dcsiruction of 

concrete water tanks due to ice lensing which supported Collins hypothesis. 

Cady [9] described three major mechanisms of frost action in aggregate. 

They are the hydraulic pressure hypothesis, the ordered-water theory, and the 

dual mechanism theory. 

Gordon [25] described four mechanisms which lead to the deterioration 

of aggregate and aggregate in concrete. They are elastic accommodation, the 

critical size of aggregate, the accretion of water from surrounding pastes, and 

the expulsion of water from aggregate into the surrounding paste. More 

detailed discussions of the above mechanisms can be found in the work cited in 

the references. 

Hudec [29], based on 15 years of theoretical and laboratory-derived 

evidence, concluded that the primary cause of failure of aggregate in concrete 

is due to repeated wetting and drying rather than repeated freezing and 

thawing, since the fine pores in the fine grained aggregates and cement paste 

are too small to allow freezing to take place. He explained that the pore water 

in the small pores is under the influence of capillary and surface forces of the 

pore material and has a lower vapor pressure. This will prevent it from 

freezing, but will result in the difference in osmotic pressure, causing 

expansion. The osmotic potential is further increased in the presence of de-

icing salt, whose cations are adsorbed and concentrated on the pore surface, 

causing greater expansion. 
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Perhaps the most widely accepted theory on the mechanism of frost 

action is the hydraulic pressure hypothesis proposed by Powers [52]. As will 

be shown later, this hypothesis forms the basis for the proposed model 

presented in this dissertation. Therefore, a separate section is devoted to the 

discussion of this hypothesis. 

It generally is accepted that cement paste can be made immune to frost 

damage by incorporating entrained air. However, this would not completely 

avoid frost damage of concrete since the freezing phenomenon in aggregate 

must also be taken into consideration [1]. In view of this, research done on the 

freeze-thaw durability of concrete mainly concentrate on the methods of 

testing for frost resistance of aggregate and aggregate in concrete. Basically, 

there are two types of methods of evaluating frost resistance of aggregate and 

concrete: (1) methods based on direct testing of aggregate or aggregate in 

concrete in a given freeze-thaw environment; (2) methods based on 

measurements of some physical properties of concrete and aggregate such as 

porosity, pore size distribution, absorption, dilation, etc., and correlation with 

known field performance. 

Laboratory tests on aggregate include absorption, specific gravity, pore 

structure, and soundness testing. The soundness test has been used to evaluate 

frost resistance of aggregates for many years. The ASTM standard for this test 

is designated C88-83 "Test Method for Soundness of Aggregates by Use of 

Sodium Sulfate or Magnesium Sulfate". Many investigators have found that 

the test results are generally not reproducible and do not correlate well with 

field performance, and thus are not suitable for prediction of fîeld 

performance of aggregate in concrete subjected to freeze-thaw cycles 
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[36,47,63]. Schuize and Lange [63] presented a paper discussing various 

methods for determining the frost resistance of concrete aggregate. They 

concluded that methods that are used to determine the pore characteristics of 

aggregate are more important than the sulphate soundness test because 

volume stability depends mainly on pore volume, pore size, pore size 

distribution, and permeability. 

Because aggregate is not the sole ingredient in concrete, it generally is 

accepted that incorporating aggregate into concrete before testing provides a 

more realistic indicator of durability. For testing aggregate in concrete, the 

specimen is subjected to a prescribed number of freeze-thaw cycles and 

testing environment. The extent of frost damage is then assessed by 

determining the change in the dynamic modulus of elasticity as a function of 

freeze-thaw cycles. A reduction in the modulus indicates deterioration of the 

concrete. The extent of damage can also be assessed by following the weight 

loss, by visual observation, or by pulse velocity measurements. The weight 

loss method is more indicative of external surface degradation, while dynamic 

modulus and pulse velocity measurements are more indicative of internal 

structure integrity. The current ASTM method requires the determination of a 

durability factor. The specimen is subjected to 300 freeze-thaw cycles or until 

the dynamic modulus drops to 60 percent of original value, whichever occurs 

first. The durability factor is defîned as the product of the number of cycles at 

the end of the test and the percentage of original modulus retained divided by 

300. Two procedures for evaluating the frost resistance of concrete are given 

by ASTM C-666 "Standard Test Method for Resistance of Concrete to Rapid 

Freezing and Thawing" [2]. These procedures differ mainly in the type of 
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freezing medium. Procedure A involves freezing in water and thawing in 

water, while procedure B involves freezing in air and thawing in water. ASTM 

does not offer criteria indicating what constitutes good or poor performance. 

This test mainly serves as a means for differentiating between good and bad 

aggregate in a relative sense. Thus, acceptance or rejection of an aggregate 

rests on criteria set by specifying agencies. The test procedures and results 

have been the subject of considerable research and discussion. 

Although this test provides useful information on the durability of 

concrete, it has been strongly criticized for lack of consistent correlation with 

actual field performance. One of the most common criticisms is that this test 

represents more extreme conditions than those experienced under field 

conditions. It has been pointed out that in order to produce results quickly, 

the testing environments are more severe and thus more destructive than the 

field conditions. The major differences between laboratory testing and field 

exposure of concrete are the relatively young age of concrete at the start of 

the test, lack of drying periods, and the high rate of cooling in laboratory 

samples [25]. Also, the results depend on which procedure is used. Procedure 

A generally is found to be more severe than procedure B [34,67,76,83]. 

Sturrup et al. [67] indicated that procedure A does not differentiate 

between concretes of poor durability, such &s those without air-entrainment, 

and those with poor quality aggregate. Procedure A can mainly be used to 

differentiate between concrete of poor and good aggregate but not concrete of 

marginal aggregate. Procedure B has poor reproducibility as well as difficulty 

in discriminating between air-entrained and non-air-entrained concrete 

having low water/cement ratios. 
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Wright and Gregory [83], in explaining the reason for the lesser severity 

of procedure B, suggested that the evaporation of water from the specimen 

surface before freezing mitigates damage by reducing the stresses developed 

near the surface when water freezes. They also investigated and compared the 

evaluation of the durability of concrete by dynamic modulus of elasticity and 

pulse velocity measurements and found them to be equally suitable. 

In viftw of the problems associated with the standard ASTM test, it is not 

surprising that many researchers have attempted to correlate this standard 

laboratory accelerated frceze-thaw test results to actual field performance. 

Kennedy and Mather [32] attempted to find a correlation but were rather 

unsuccessful. 

Powers [56] claimed that this standard freeze-thaw cycling test is too 

severe to be of any practical use mainly because no drying of the specimen is 

permitted, and the rate of freezing is many times higher than that which 

occurs in the field. Almost all concretes undergo some drying during the 

periods between freezing except those permanently submerged under water. 

The rate of freezing determines the rate at which ice forms in the pores, 

which in turn determines the rate at which water is being displaced. The 

faster the freezing, the higher the expected hydraulic pressure. Many 

aggregates which may otherwise prove to be durable in the field were rejected 

on the basis of this test. As a result. Powers conceived an alternate test, which 

was standardized by ASTM as "Standard Test Method for Critical Dilation of 

Concrete Specimens Subjected to Freezing", designation C-671 [3]. He proposed 

that specimen be conditioned to a moisture content expected in the Held at the 

start of the freezing season, then immersed in water and periodically subjected 
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to freezing at the rate and frequency to be expected in the field. If the length 

change decreases linearly down to a temperature of IS *F, the specimen is not 

critically saturated and therefore is immune to frost damage at that rate. If the 

length change deviates from a straight line in an expansive direction, the 

specimen is critically saturated and susceptible to frost damage. Figure 1 

shows a typical length change and temperature plot for this test. In principle 

only one cycle need to be run; that is, at the end of freezing season. 

Tremper and Spellman [69] of the California Division of Highways 

implemented this critical dilation test to evaluate aggregate for a major 

highway construction project. They placed concrete slabs of the same 

thickness as the prototype pavement at a project site and measured their 

moisture contents at the start of freezing season. Specimens conditioned to 

that moisture content were then subjected to dilation testing. Test results 

permitted the use of aggregates which otherwise would have been rejected if 

the repeated freeze-thaw tests had been used. Later performance of the 

prototype justified the usefulness of the test. However, this test still is not 

widely used; partly because the length of time required to run the test 

normally is longer than the usual repeated freezing and thawing test; and 

primarily because the initial field moisture content has to be known. 

Many other researchers have attempted this one-cycle test with 

considerable success. Maclnnis [45] proposed a one-cycle freezing test for the 

study of freeze-thaw durability of concrete. He considered the expansion and 

contraction of concrete during the freezing cycle to be an important 

indication regarding frost damage. He conducted tests on cement grouts, 

mortars, and concretes. He postulated that continuous expansion during 



www.manaraa.com

1 1  

200  

«00 
O i l o t i o n  U  

• 6 0 0  

20  

25 

3 0 2 4 

T I M E  ( H )  

Figure 1. Typical length change and temperature plot for the critical 
dilation test [3] 
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freezing indicates frost susceptibility, while contraction indicates high 

resistance to freeze-thaw damage. However, he did not make any correlation 

between the results of one-cycle freezing test and the field performance of 

concrete. 

By using a one-cycle test, Vuorinen [74] introduced a dilation factor and 

degree of saturation for evaluating the frost resistance of concrete. He found 

good correlation between the maximum dilation on first freezing and the 

residual expansion on subsequent thawing. 

Faulkner and Walker [22] conducted a rapid one-cycle test for evaluating 

aggregate in concrete. They stated that a carefully measured length change 

during the first freezing period shows a "fingerprint" that can be successfully 

used for correlation with the durability factor that is obtained from the 

repeated freezing and thawing test. They used the slope of cumulative length 

change versus temperature and the length change versus time curves of the 

first freezing cycle near the freezing point of water as the "fingerprint". 

Experimental results indicated that the test was satisfactory for differentiating 

aggregate having a durability factor less than 30% and more than 50%, but 

unsatisfactory for intermediate percentages. 

The physical properties of aggregate and concrete such as the porosity, 

pore size distribution, absorption, length change, etc. are important 

characteristics affecting their resistance to frost damage. 

Larson and Cady [35] evaluated the frost susceptibility of aggregates by 

measuring their linear and volumetric particle expansions. The volumetric 

particle expansion was found to be an indicator of frost susceptibility. 
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Kaneuji [31] introduced an expected durability factor from his 

correlation between pore size distribution and freeze thaw durability of coarse 

aggregates based on total porosity and median pore size obtained from 

mercury porosimetry measurements. The expected durability factor is given 

as 

EOF = 0.579/PV + 6.12 (MD) + 3.40 

Where EDF = expected durability factor 

PV = intruded volume of pores larger than 45 Â in diameter, cc/g 

MD = median diameter of pores larger than 45 Â in diameter as 

measured by mercury porosimetry 

Based on field performance of concretes showing varying degrees of 

durability failure, he concluded that the expected durability factors for non

durable, marginal, and durable aggregates were less than 40%, 40-50%, and 

more than 50%, respectively. Further investigations by Lindgren [42] on the 

pore characteristics of aggregates from 52 concrete cores from Indiana 

pavements demonstrated the usefulness of the proposed correlation. 

Shakoor and Scholer [65] made a comparison of aggregate pore 

characteristics as measured by mercury porosimetry and the Iowa pore index 

test proposed by Myers and Dubberke [49] of the Iowa Department of 

Transportation. The apparatus for the Iowa pore index test is a modified 

version of a typical air pressuremeter with the replacement of the pressure 

chamber above the container by a 1" diameter plastic tube calibrated in 

millimeters. Approximately 9000 grams of oven-dried aggregate, graded 



www.manaraa.com

1 4  

between 1/2" and 1 1/2", is placed in the container and covered with water to 

the zero mark in the plastic tube. The container is shaken to remove 

entrapped air, and a constant air pressure of 35 psi is applied through the top 

of the tube. The amount of water forced into the aggregate during the first 

minute represents the volume of macropores, and it is termed "primary load". 

The amount of water that is forced the next 14 minutes represents the volume 

of micropores, and it is termed "secondary load" or pore index. Shakoor and 

Scholer [65] reported strong correlation between the expected durability 

factor proposed by Kaneuji and the Iowa pore index test value. They further 

stated that the Iowa pore index test can be used as a reliable, less expensive, 

and quicker means for predicting aggregate durability and as an acceptance 

test for aggregate production than mercury porosimetry. Comparison between 

the expected durability factor and the pore index value of coarse aggregate 

indicates that unsound aggregates are characterized by high pore index 

values. Based on field performance data, a pore index of 50 ml was chosen to 

separate durable from nondurable aggregate. 

The importance of aggregate pore characteristics to concrete durability 

has also been studied by Dolch [13], Lemish et al. [38], Lewis and Dolch [40], 

Sweet [68], Verbeck and Langren [73], and Walker and Hsieh [77]. 

Verbeck and Langren [73] showed the size of coarse aggregate to be an 

important factor in its frost resistance. They demonstrated that there is a 

critical size below which any given natural aggregate, unconfined by cement 

paste, can be frozen without damage. They observed that for a good quality 

aggregate, the critical size ranges upwards to a quarter of an inch. 
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Schuster and McLaughlin [64] found that cherts with high porosity were 
0 

more susceptible to frost damage than those with low porosity. 

Lewis and Dolch [40] stated that "harmful" pore sizes are those large 

enough to admit water but not large enough to permit easy drainage. 

Sweet [68] stated that the volume of pores with a size smaller than S um 

appeared to be a critical index of field durability. He further noted that for 

limestone aggregates with good service record in concrete pavements, the 

volume of voids less than S um, expressed as the ratio of the total pore volume 

of the sample, was less than 0.06. For poor service record aggregates, this ratio 

was greater than 0.10. Later work by Schuster and McLaughlin [64] on cherts 

in concrete showed that their freeze thaw durability was less dependent on 

the pore size content of S um or less. 

Verbeck and Klieger [72] devised a calorimeter-strain apparatus for the 

study of the mechanism of frost action in concrete. This apparatus allows 

simultaneous determination of the amount of water actually frozen in concrete 

at a given temperature, and the resulting length change, which in turn allows 

the study of the influence of various factors such as air void characteristics, 

water/cement ratios, curing, and aggregates on frost resistance of concrete. 

Levitt [39] developed a theory for the mechanism of fluid travelling 

through porous materials. He devised an apparatus for the initial surface 

absorption test and found the test to be sensitive to changes in the quality of 

concrete, and to correlate well with field and laboratory behavior. The initial 

surface absorption is defined as the rate of flow of water into concrete per unit 

area after a given time from the beginning of the test and at a constant head 

and water temperature. He suggested tentative limits for initial surface 
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absorption to protect concrete from frost damage, but stressed that more 

information is needed before any definite limits could be established. 

Klieger [33] studied the effect of entrained air on durability of concrete 

with various sizes of aggregate. He reported that for air-dry concrete, the 

optimum air content can be achieved by providing a relatively constant air 

content in the mortar fraction regardless of its cement content, consistency, 

maximum size and type of aggregate. For maximum protection, the mortar air 

content appears to be in the range of 8% to 10%. 

The Influence of Saturation 

Perhaps two of the most important factors that influence the freeze-

thaw durability of concrete are the relative ease with which it becomes 

saturated and the level in excess of critical saturation. The higher the rate of 

water intake, the faster the concrete attains critical saturation. Once a 

concrete reaches its critical degree of saturation, failure is inevitable. Thus, it 

may be postulated that any properties that influence these factors affect frost 

resistance. 

Birger [7], in describing a model for the process of frost deterioration of 

concrete, stated that the time required to saturate the entrained air voids such 

that the concrete exceeds critical saturation is important to frost resistance 

mainly because the capillaries are usually saturated very quickly. However, 

this would not bring the paste above critical level of saturation. Frost damage 

therefore occurred only after certain entrained air voids were water-filled. 

Verbeck and Langren [73] indicated that the durability of concrete made 

with different aggregates depends on the rate at which the aggregate becomes 
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critically saturated. They further stated that the time required for concrete to 

reach critical saturation is influenced by pore size and porosity of the 

aggregate as well as the thickness and permeability of mortar cover. 

Walker and Hsieh [77] maintained that aggregates which exhibit good 

durability have a relatively low absorption. Aggregates with absorptions 

above 5% have a high potential for low durability. 

Lemish et al. [38] stated that the abundance, size, shape, and continuity of 

pores determine the amount and rate of absorption, and the ease water can 

escape. 

Hudec [30] reported that the durability of limestone rocks is a function of 

grain size, pore size, and rate of capillary absorption. He found the rate of 

absorption to be very fast initially and subsequently slower at later time. 

Rocks with high rates of absorption are less durable than rocks with low rates 

of absorption in terms of freezing action. Rocks of a fine-grained texture are 

more susceptible to frost damage than those which are coarse-grained, 

because the absorption is faster in the smaller pores in fine-grained rocks. 

Similarly, Myers and Dubberke [49] concluded that coarse aggregates with 

good service records are generally coarse-grained or extremely fine-grained 

in texture, and those with poor service records are usually fine-grained in 

texture. 

Sweet [68] indicated that limestone aggregates with absorption and 

degree of saturation values greater than 3.9% and 86%, respectively, showed 

rapid deterioration when incorporated into concrete and subjected to freeze-

thaw cycles. Those aggregates with an absorption value from 2-3% and a 

degree of saturation greater than 82% were intermediate, and those with 
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absorptions less than 2% and degree of saturation less than 80% were highly 

resistant. 

It always has been assumed that a concrete exceeding its critical 

saturation level will experience such high destructive pressure that failure 

will be imminent. Then what is critical saturation? Various researchers have 

different ways of defîning it. Since water expands about 9% upon freezing, a 

closed container 91.7% full of water will be completely filled upon freezing. 

Thus 91.7% can be considered as the critical saturation. However, freezing of 

water in a porous body is fundamentally different from freezing of bulk water 

in a container. Freezing of pore water depends on the pore size and structure, 

homogeneity, and rate of freezing. 

Maclnnis and Beaudoin [46] concluded that the critical degree of 

saturation of mortar mixes is approximately 90%. This critical saturation is 

defined based on length change pattern produced in a one-cycle freezing test. 

The critical saturation is defîned as the saturation level below which no 

distinctive length change was observed. They studied the effect of the 

water/cement ratio and degree of saturation of air-entrained concrete on the 

expansion upon freezing, and found that no expansive tendencies occurred at 

water/cement ratios below 0.55 even at 100% saturation. However, at 

water/cement ratios above 0.60, expansion occurred when the saturation was 

above 90%. The higher the water/cement ratio, the higher the expansion. 

Powers [55] stressed that it is impossible to establish a critical saturation 

value for an aggregate particle since the moisture content is not uniformly 

distributed in an aggregate at the time of freezing. 
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Fagerlund [21] conducted an extensive study on the significance of the 

critical degree of saturation. He stated that the critical degree of saturation is 

a material constant which adopts an individual value for each particular 

material. He further stated that proper use of the principle of critical 

saturation requires the knowledge of two properties: first, the moisture 

distribution in the structure; secondly, the critical saturation, which is a 

function of the material's properties, must be known at all parts of the 

structure. Based on the concepts presented, he defined frost resistance as the 

difference between critical and actual saturation. By using this definition, he 

claimed that all materials would be treated the same way, even though their 

properties such as densities, porosities, etc., were different. The frost 

resistance can then be expressed by single value which allows a rational 

choice of materials available. 

Powers' Mechanism of Frost Damage 

Some early attempts to explain the mechanism of frost damage were 

based on the fact that water expands about 9% upon freezing. Thus if water is 

frozen in a closed container filled above 91.7%, the expansive force may be 

sufficiently high to rupture the container. The freezing of pore water in 

porous materials was assumed to behave the same way as the freezing of water 

in a container. Based on this premise, the critical saturation of porous 

materials may be assumed to be 91.7%. Many experiments, as well as this 

research have proved otherwise; in fact, in many instances the critical 

saturation was found to be much below this level. This should be easily 
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recognized since the freezing of pore water is fundamentally different from 

the freezing of bulk water. 

In 1945, Powers [52] proposed a hypothesis for the mechanism of frost 

action on concrete. The hypothesis is based on the premise that the 

destruction of concrete is mainly due to the generation of hydraulic pressure 

resulting from expansion of water upon freezing, instead of direct growth of 

bodies of ice crystals. When water freezes, the volume increase causes water to 

be displaced from the region of freezing, and the viscous resistance to flow of 

water through the concrete may generate hydraulic pressure large enough to 

rupture concrete. The magnitude of this stress depends on factors such as the 

rate of freezing, the degree of saturation, the permeability of concrete, and 

the paste properties. 

The existence of ordinary bulk ice depends on the temperature and 

pressure of the prevailing environment. At normal atmospheric conditions, 

water freezes at 32 *F. At higher pressures, lower temperatures are required 

to freeze water. For instance, at 29,000 psi, a temperature below -4 °F is 

required to freeze water; or conversely, a pressure of 29,000 psi would be 

required to prevent the formation of ice at -4 "F. This essentially is the 

magnitude of pressure exerted on a closed cylinder piston if the piston is 

prevented from movement upon freezing [52]. 

The above gives an idea of the order of magnitude of internal stresses 

that a fully saturated, completely sealed concrete would be subjected to upon 

freezing. Powers pointed out that if a concrete is fully saturated, it would not 

be able to withstand the internal pressure, as evidenced by the failure of 

vacuum saturated specimens in low-temperature laboratory freeze-thaw 
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experiments. However, concrete does not ordinarily fail completely during 

the first cycle. This implies that it is not fully saturated, but has enough 

residual space to accommodate expansion upon freezing. However, in many 

instances concrete shows loss of resilience and abnormal expansion on 

repeated freeze-thaw cycles, even though the concrete not critically saturated. 

In other words, damage still occasionally occurs even if the concrete is below 

its critical degree of saturation. From these experimental observations. Powers 

proposed a working hypothesis to explain the mechanism of frost action in 

concrete. The hypothesis is as follows [52]: 

If a surface of a concrete specimen is in contact with water for some 

time prior to the freezing and thawing cycle, the water content of the 

concrete at or near the surface probably is at or near total saturation, and may 

be slightly higher than the average water content of the specimen. If this 

surface is situated in such a way that heat transfer is towards the surrounding 

water, the sequence of events that takes place should be as follows: first, the 

water on the surface will freeze as the temperature is lowered, which seals off 

the surface; second, the water in the capillary spaces of the concrete nearest 

to the surface will freeze. As ice forms in these spaces, the still unfrozen 

water in the saturated region will be displaced towards the less saturated 

interior. Figure 2 may help in visualizing this. Figure 2 depicts the cross 

section of a part of the specimen. The surface in question is normal to the 

plane of the page at "aa". The saturated region near the surface is designated 

"A", whereas "B" is the region of lower water content. Ice will initially form 

outside at the surface. The inside of the specimen will remain unfrozen 

because freezing of pores occurs at subzero temperatures. Because of the 
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Figure 2. Cross section of a freezing specimen [52] 
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temperature gradient and higher water content in "A", freezing will first 

occur tn region "A". When ice begins to form in region "A", the remaining 

unfrozen water will be displaced towards region "B". If water were free to 

move without any viscous resistance and the system is open-ended, there 

would be no hydraulic pressure generated. Since water is moving through a 

fine-textured, porous substance, the laws of hydraulic flow mandate that the 

force causing movement will result in corresponding viscous resistance, and 

hydraulic pressure gradients will be present during the flow of water. If the 

reaction against the viscous resistance of displacing water exceeds the tensile 

strength of concrete, failure is inevitable. The magnitude of this hydraulic 

pressure can be estimated based on the permeability of concrete. 

Powers, in explaining the process of crumbling and spalling, stated that 

on repeated freezing and thawing region "A" would increase in thickness, 

depending on the amount of water absorbed. As the thickness of "A" increases, 

the resistance to displacement of water out of the freezing region towards the 

region of lower water content increases, since the path of flow also increases. 

If this saturated region "A" becomes sufficiently thick, the hydraulic pressure 

generated will exceed the strength of concrete, causing disintegration or 

spalling of some parts of region "A". The thickness of the region at which 

disintegration occurs is referred to as "the critical depth of saturation". This 

critical depth of saturation is somewhat arbitrary, since in actual situations 

there will be a gradual transition with a continuous moisture gradient 

between these two regions. One implication that can be derived from the 

above concept is that if a specimen were uniform in structure and not wholly 

saturated at the beginning, there would be no crumbling and spalling until a 
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certain amount of water had been absorbed such as to saturate the surface 

region to critical depth. The critical depth is different for different grades of 

concrete. This critical depth depends on factors such as the permeability of 

concrete, the rate of freezing, and the amount of water in region "A" in excess 

of critical saturation. At a given hydraulic pressure the average stress in the 

concrete depends on the proportion of solids in a unit cross sectional area. 

If the critical depth of saturation of a specimen happens to be equal to or 

greater than half its thickness, disintegration should not take place until the 

entire specimen reaches critical saturation. Such a specimen should not 

exhibit any disintegration or crumbling during the process of acquiring 

water to reach critical saturation. Once it reaches critical saturation, it would 

take very few cycles for the concrete to disintegrate completely. This 

phenomenon has been observed in the laboratory [52]. 

The discussions up to this point are mainly based on the assumption that 

the submicroscopic pores in the partially desiccated paste are the only space 

available to accommodate the movement of water during freezing. Actually, 

concrete contains air-filled cavities that may or may not be connected directly 

to the exterior surface. These cavities are entrained air bubbles, accessible 

pores in the aggregate particles, and thin fissures under aggregate particles. 

These Assures are formed during the bleeding period. They are first water-

filled, but may become partially or completely empty as hydration proceeds. 

All of these cavities are difficult to fill with water because liquid can not flow 

spontaneously from smaller to larger pores because of capillarity. Under 

normal conditions, a pressure exceeding one atmosphere is required to HII a 

cavity, and the pressure generated during freezing generally is sufficient to 
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force water into such pores. From the above discussion, one might be tempted 

to draw the conclusion that concrete will be protected if enough spaces are 

available to accommodate the expansion during freezing. Ordinary, concrete 

contains more than enough space to accommodate the expansion. In such a 

case, concrete would theoretically be protected from freeze thaw damage 

indefinitely. This statement is clearly contrary to observed fact, leading to the 

hypothesis that the distance between the air voids or cavities rather than the 

total volume of air voids may be the controlling factor in frost susceptibility. 

Experience seems to indicate that if a concrete contains a large number of 

small, well distributed air cavities, its rate of deterioration is greatly reduced. 

This reduction can be accomplished by incorporating entrained air bubbles 

that serve as escape boundaries or relief valves for the displaced water. If 

they are closely and uniformly distributed, they limit the thickness of material 

through which displaced water must flow, thereby reducing the hydraulic 

pressure generated. However, in the event that concrete exceeds its critical 

level of saturation; for example, after prolonged soaking, there will not be 

enough empty spaces to accommodate all the excess water. As a result, some 

excess water will find its way to the exterior of specimen. Since the path of 

flow is greatly increased, there will be a proportional increase in hydraulic 

pressure, which is a potential source of frost damage. 

The relative permeabilities of paste and aggregate also are important in 

determining frost damage. If the aggregate is impermeable relative to the 

paste, there should be an increase in hydraulic pressure in the region where 

the paste is saturated, because the aggregate block the most direct path of 

displaced water to the unsaturated region. Thus one would expect concrete 
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containing impermeable aggregate to fail along the aggregate surfaces under 

freeze-thaw action. Conversely, if concrete contains unsaturated aggregate 

that is more permeable than the paste, the aggregate should aid in alleviating 

the hydraulic pressure the same way cavities do until they become saturated. 

When they become saturated, water must flow to the surrounding paste during 

freezing. Otherwise the pressure which develops within the aggregate will be 

high enough to rupture both the aggregate and the surrounding paste. The 

magnitude of this pressure depends on the permeability of the paste that lies 

between the saturated aggregate and the unsaturated region. 

Powers [52] stated that the frost resistance of concrete depends on its 

initial degree of saturation and rate of water absorption. One of the factors 

that governs the amount of water absorbed during thawing is the rate of 

thawing. 

Subsequent studies by Powers and associates [53,54,58,59] led to the 

introduction of the air void spacing factor and the entrained air requirement 

of concrete. 

As stated previously, entrained air is incorporated into concrete to 

protect it from destructive hydraulic pressure. The effectiveness of the 

entrained air depends on the void spacing factor, which is defined as the 

average maximum distance from any point in the paste to the edge of a void. 

Powers stated that the maximum permissible spacing is a function of paste 

properties, degree of saturation of the paste, and rate of cooling. He presented 

a theoretical calculation of the desired spacing factor based on experimental 

data from six different cement pastes, cooled at 20 'F per hour, and found the 

spacing factor to be in the range of 0.01 in. to 0.026 in. or more; depending on 
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the paste characteristics and void size. The spacing factor and the total volume 

of air can be determined by the linear transverse method. An actual maximum 

spacing factor for certain frost resistant concrete was estimated to be in the 

order of 0.01 in. or less using this method. This value is in close agreement 

with the theoretical spacing factor he presented. Powers also gave theoretical 

equations for the determination of the air requirements and the magnitude of 

hydraulic pressure. The amount of air required was found to be a function of 

paste content, specifîc surface of air voids, and maximum permissible spacing 

factor. The magnitude of hydraulic pressure generated depends on the 

permeability of the paste, spacing factor, degree of saturation, rate of cooling, 

viscosity of displaced water, and the amount of water frozen for each degree 

drop in temperature. Detailed discussions and derivations of these equations 

can be found in the cited references. 

Pore Structure Analysis Methods 

It is clear from previous discussions that many researchers recognize 

the important role pore structure plays on frost properties of porous materials. 

The influence of pore structure is considered as a significant factor 

influencing the freeze-thaw resistance of concrete. Powers and Helmuth [59] 

considered the size, shape, and pore size distribution as some of the most 

important factors controlling the magnitude of hydraulic pressure generated 

in concrete during freezing. 

Various direct and indirect methods have been introduced in recent 

years for pore size distribution analysis. The most direct methods are 

scanning electron microscopy and transmission electron microscopy. These 
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methods are not routinely used because they are tedious, costly, and require 

special technique and skills. The most widely used indirect methods are 

mercury porosimetry and sorption isotherm. Mercury porosimetry was first 

proposed by Washburn [78] and subsequently developed by Ritter and Drake 

[60] and Winslow and Shapiro [82]. Sorption isotherm was first proposed by 

Wheeler and later developed by him (79a,b] and Cranston and Inkley [12]. 

Another useful method is phase transition porosimetry proposed by Eckrich et 

ai. [14] and Enustun et al. [16]. All of these methods are commercially 

available. Mercury porosimetry has found application in the field of civil 

engineering materials, where it is considered to be the standard method for 

pore structure analysis. Phase transition porosimetry is still in its infancy 

stage and may become more popular because of the many advantages it offers 

and also because of the many problems associated with mercury porosimetry. 

Msrcury porosimetry theory 

This method involves evacuation of pore air from an oven-dried sample 

by vacuum. Mercury is then forced into the pores of the sample at various 

increments of pressure. The theoretical principle behind this is that mercury, 

a non-wetting liquid, will only intrude into the pores of materials if the 

mercury is under pressure. As the pressure is gradually increased, the pore 

volume intruded by mercury is measured as a function of pressure. The 

Laplace equation is used to relate the pressure difference across the convex 

liquid meniscus to its mean radius of curvature. In the case of mercury, the 

pressure is given by 
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2Ym 
AP = ( 1 )  

'm 

Where Ym and rm are the surface tension and mean radius of curvature of the 

mercury meniscus, respectively. 

As pressure is gradually increased, the mean radius of curvature 

becomes progressively smaller as mercury moves inward into the pores. 

When the pressure reaches a certain value, the geometry of pore opening can 

not tolerate the existence of the meniscus with rm smaller than a minimum 

value, and mercury will invade the pore body. If mercury were a perfectly 

non-wetting liquid, r^ would give the characteristic pore neck size, r. 

However, the contact angle, 6, of mercury is always less than 180 degrees. 

Washburn [78] derived the relationship between r^ and r by considering the 

special case of a cylindrical pore opening. It is given by 

2Yn,Cos0 
r= - (2) 

P 

By knowing Ym and 0, r can be obtained from the measured breakthrough 

pressure. In actual situations, there are assorted sizes of pore necks and 

intrusion will occur progressively as pressure increases. The intruded volume 

is monitored as a function of pressure, dVp/dP, which then is converted to 

pore volume as a function of pore radius. dVp/dr, using equation 2. The result 

is an integral form of the pore neck size distribution; derivative will give the 

pore neck size distribution. 
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If the pressure is gradually decreased, mercury starts extruding from 

the pores. The measured extruded pore volume, as a function of pressure, 

should give the pore body size distribution. However, due to problems 

associated with mercury entrapment and hysteresis, extrusion data do not 

allow a realistic pore body size distribution to be obtained. 

Two theories have been suggested recently to explain hysteresis and 

mercury entrapment. The first, proposed by Hill [28], states that intrusion 

advances axially while extrusion occurs radially. He showed extrusion 

pressure to be equal to half of that required for intrusion into cylindrical 

pores. He also stated that in a porous system consisting of essentially 

cylindrical pores, if the neck radius is less than half the pore radius, mercury 

entrapment takes place. The second theory is based on Polanyi's pore potential 

theory and was suggested by Lowell and Shields [43]. This theory states that 

once a pore is intruded, mercury atoms fall into the potential field of capillary 

pore walls and acquire a lower free energy than that present during 

intrusion. Extrusion therefore is delayed and commences only at a lower 

pressure with a smaller contact angle than that of intrusion. According to this 

pore potential theory, entrapment occurs if the interfacial energy near a pore 

opening or constriction is equal to the pore potential. 

In addition to entrapment and hysteresis, there are controversies 

regarding kinetic hysteresis due to hydraulic drag and the magnitude of 

contact angle that should be used. The contact angle depends on the nature of 

the matrix and must be determined independently for each individual 

material. This is further complicated by the difference in contact angle 

associated with an advancing and retreating meniscus [11]. Another problem 
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with this method is that if a void has an entrance or neck smaller than its 

body, the whole void volume will be incorrectly recorded as being the size of 

entrance. The pore size distribution is therefore weighted towards smaller 

pore sizes [13]. Another limitation of this method is the necessarily small size 

of sample that can be tested, which may not be representative of a sample that 

is heterogeneous in character. 

Phase transition porosimetrv theory 

The plastic ice theory of capillary freezing and melting of pore water 

was first proposed by Everett [19] and Everett and Haynes [20]. Further 

investigations by Enustun et al. [17,18] confirmed the applicability of this 

theory. The mechanism is essentially similar to mercury intrusion and 

extrusion. The progress of capillary freezing occurs by virtual penetration of 

bulk ice. which corresponds to mercury intrusion; whereas the progress of 

melting, or virtual recession of bulk ice. corresponds to mercury extrusion 

provided that the contact angle is 180* [14]. The progress of phase changes 

can be followed by measuring the volume change of a completely saturated 

sample due to the freezing and melting of the pore water. Expansion takes 

place upon freezing because of the extrusion of ice from the freezing pores, 

while contraction occurs by admission of ice into the melting pores. 

If it can be assumed that the pore geometry of a porous material consists 

of intersecting spheres or cylindrical capillaries with or without constrictions, 

the temperature t(°C) at which the solid-liquid phase transition of pore water 

takes place in a pore with effective radius, r(cm), is given by [14] 
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-1 = 

(pXr + 0.5To) 
(3)  

Where To = normal melting point of water in degrees Kelvin 

X = heat of fusion of ice per unit mass 

p = density of water 

Yo = ice/water interfacial tension at 0 *C 

The constant 0.5 is a dimensional constant for use with the C.G.S (centimeter, 

gnun, second) units. The effective pore radius, r, corresponds respectively to 

the pore neck and the pore body radius during freezing and melting. 

Consider a saturated sample placed in a mercury dilatometer at a 

controlled temperature t. As the temperature is gradually lowered and if there 

is no phase change, the mercury level in the dilatometer stem will decrease 

ttneaiiy with temperature with a slope "a". In the range of phase transition, 

the change in volume with respect to temperature, dV/dt, is related to the pore 

volume size distribution dVp/dr by [14] 

dVp dV dt 

= (a )(—)/4» (4) 
dr dt dr 

Where <|> is the fractional change in volume of water upon freezing at 

temperature t. Taking the derivative of equation 3 and substituting into 

equation 4, the following equation is obtained 
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dVp dV pXt2 

dr dt 2YoTo<|> 

(5)  

By measuring the change in volume as a function of t, the pore size 

distribution curve can be obtained by evaluating equation S for dVp/dr and 

plotting against the corresponding r values calculated from equation 3. This 

cooling curve gives the pore neck or constriction size distribution. On 

rewarming, the curve gives the pore body size distribution. The pore volume 

can be obtained by integrating equation S over the entire pore size range. The 

cooling data give the pore neck or constriction volumes, and the rewarming 

data gives the pore body volumes. 

Pore surface area can also be calculated by using the rewarming data. 

In the case of cylindrical pores, this area is given by [14] 

A = 2 /  — ( ) dr 

r2 1 dVp 

( 6 )  
r, r dr 

In the case of spherical pores, this area is given by 

r2 1 dVp 

A = 3 J — ( ) dr (7)  
fj r dr 

In the general case of irregularly shaped pores, it would be reasonable to 

replace the constant in front of the integral by 2.5. 
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Phase transition porosimetry is believed to be an important contribution 

to the field of civil engineering materials in terms of pore structure analysis 

because it is accurate and free from all the previous mentioned problems that 

confront mercury porosimetiy. To further substantiate this statement. Table 1 

presents the pore size range, porosity, and specific surface area of porous 

vycor glass obtained using various commonly known methods. 
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Table 1. The pore size range, porosity, and specific surface area of porous vycor glass 

obtained using various commonly known methods [14] 

Range of pore Range of pore Porosity Specific 

body radius, A neck radius, A % by vol. surface. 

Method Min. Mode Max. Min. Mode Max. m^/g 

Phase Transition Porosimetry 17 42 75-100 12 21 40 25^ 27b 135c 

Mercury porosimetry 19 80 - 18 25 35 29^ 

Conductance 17 36 60 - 24 26 

TEM 15 3^ 85 

Manufacturer's specification 10 - 100 ... 28 150-200 

^Frora rewarming data. 

^From cooling data. 

Assuming spherical pores. 

(^From intrusion. 

^After converting number-size dstribution to volume-size distribution. 
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PROPOSED HYPOTHESIS 

As discussed in the introduction, although research on the mechanism of 

frost action is considered well established and successful in explaining the 

role of entrained air, it can not explain the abrupt drop in frost resistance of 

concrete in near-saturated states. A new model was therefore proposed to 

address this. This proposed model, also known as the two-stage model, is based 

on the plastic ice theory of capillary freezing and melting of pore water, 

discussed below. 

Two mechanisms appear to operate during the freezing of pore water; 

namely, in situ nucleation • and bulk-ice-initiated freezing. The first 

mechanism operates at low levels of saturation, i.e., below critical saturation, 

and was treated by Powers. The second controls freezing process at high levels 

of saturation, and it occurs when the excess volume of water expelled to the 

surface upon freezing begins to form bulk ice. The bulk ice/pore water 

boundary at the surface starts to form a convex ice front and moves inward 

through the pores. The mechanism of this freezing is similar to mercury 

intrusion. It is believed that the second stage of bulk-ice-initiated freezing 

will subject the concrete to far more intense dynamic stresses because of the 

extrusion of ice, and is responsible for the frost susceptibility of concrete in 

near-saturated states. Although Powers' model also considers dynamic stress as 

the main cause of frost damage in near-saturated states, it does not associate 

this stress with the extrusion of ice but rather with the extrusion of the excess 

volume of water as freezing occurs by in situ nucleation. 
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The operations of these two mechanisms are reflected in the volumetric 

expansion of concrete upon freezing as a function of the degree of saturation. 

The damage to concrete depends on the internal cyclic stresses developed 

during freezing and thawing because of the flow of water or ice. 

Plastic Ice Theory 

In order to fully comprehend the development of the two-stage model, a 

review of the plastic ice theory is warranted. 

Two models have been advanced to explain the mechanism of capillary 

freezing and melting. They are crystalline ice and plastic ice models. 

In the crystalline ice model, ice crystals are assumed to form in the 

capillaries. After ice crystals start to form in the capillaries, they grow as far 

as the capillary walls allow, and the remaining capillary space is occupied by 

unfrozen water. This model provides the relationship between the capillary 

melting point and the capillary size. Enustun et al. (17,18) investigated the 

validity of this model by electrical conductance measurements of a sample of 

porous glass saturated with dilute ammonium nitrate solution. They found that 

the melting point of pore water predicted by this model is inconsistent with 

the accepted value derived from a consideration of the ice/water interfacial 

tension and the capillary size. They further pointed out that in situ freezing is 

a rate process that is beyond the treatment of equilibrium thermodynamics. 

They therefore rejected this model in favor of the plastic ice model. Further 

investigations confirmed the validity of this model and subsequently led to the 

development of phase transition porosimetry discussed earlier. 
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The plastic ice model, first proposed by Everett [19], provides the 

relationship between the freezing temperature and the capillary pore 

opening, is based on equilibrium thermodynamic principles. The development 

of the theory is as follows [19,20]: 

Consider two cylinders A and B, joined by a capillary tube and closed by 

pistons at both ends, as shown in Figure 3a. Let them be filled with water at 

pressure P. The temperature of water in B is then lowered below 0 C and 

freezing is nucleated in B only. As the freezing progresses, the accompanying 

expansion upon freezing is taken by the movement of pistons. If the upper 

piston is fîxed, then water will flow through the capillary tube into A and will 

displace the lower piston. If both pistons are not restrained from movement, 

when freezing is completed in B, further lowering of temperature will result 

in the formation of ice in either of two ways: (1) intrusion of ice crystals from 

B into the capillary tube; (2) continued growth of ice crystals over the lower 

face in B, followed by the migration of water from A to B. The latter will cause 

an upward movement of upper piston. 

The Laplace equation gives the pressure difference across the ice/water 

meniscus as 

2Ti»W 
P i - P w =  ( 8 )  

n.w 

Where P; and P^y are the pressure in the ice and water phase, respectively. 

ri,w is the radius of curvature of ice/water meniscus and Yi,w 's the surface 

tension across the interface. 
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(a) 

Figure 3. Schematic diagrams of capillary freezing and melting [19] 
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Provided that the pressures exerted by the pistons are equal at 

equilibrium, i.e., PpP^, the ice/water interface will be a plane and there will 

be no tendency for ice to penetrate into the capillary. Figure 4 shows the 

equilibrium interface between ice and water. Growth of an ice crystal into the 

capillary would occur if the chemical potential of material in the capillary is 

higher than that of bulk ice. These essentially are the conditions that exist in 

weakly consolidated materials such as soil, where no pressure difference can 

be maintained. Once ice is formed, water is drawn from the surrounding 

unfrozen region to form a larger ice lens. Essentially, this is believed to be the 

mechanism behind frost heave because the chemical potential of liquid water 

is greater than that of bulk ice at temperature below 0 *C. Water will migrate 

from regions of high chemical potential to regions of low chemical potential. 

If Pj remains constant and the piston is not prevented from movement by 

friction in B, ice will continue to grow in B until all water is drawn from A. 

The chemical potential of liquid water, Uw, at temperature, T(K), and 

pressure, P^, is given by [18] 

T 

u^(T,P^) = u^(To,Po) - / dT + J dP (9) 

To Po 

Where Tq = melting point of water at K 

Pq = atmospheric pressure 

= molar entropy of water 

= molar volume of water 
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water 

Pi = Pw, ri.w = oo 

Pi - Pw < 2 Y/ri,w. ri,w > r 

Pi - Pw = 2 Y/ri,w. ri,w = r 

Figure 4. Equilibrium interface between ice and water [19] 
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Similarly, the chemical potential of bulk ice, u;, at temperature, T(K), and 

pressure, P;, can be given by 

T Pj 

uj (Tf;) = Ui (To,Pq) - J Sj dT + J Vi dP (10) 

To Po 

Where Si = molar entropy of ice 

Vj = molar volume of ice 

Consider a closed end capillary tube connected to a piston as shown in 

Figure 3b. Due to movement of piston, the pressure of ice will remain at 

atmospheric, Pq. As the temperature is gradually lowered, the transfer of 

water from the capillary tube to bulk ice lowers the pressure of water below 

atmospheric to Pq - (2Y/ri,w)- In accordance with the Laplace equation, the 

radius of curvature will increase. Since u; = u^y at equilibrium, if we assume 

that at the same temperature and pressure, any thermodynamic property of 

either phase is equal whether it is in bulk state or in the capillary, then by 

combining equations 8, 9, and 10, the following equation is obtained [18]. 

T T Po-2Y/ri.w 

- /  S i d T  =  - J  S ^ d T  +  /  V ^ d P  ( 1 1 )  

To T„ P„ 

If the pressure dependence of is neglected, then equation 11 becomes 

2yy^ T 

=  J ( S ^ - S i ) d T  ( 1 2 )  

ri.w TQ 
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From thermodynamic considerations [18] 

L T Cpw - Cpi 

Sw-Si=—+ / dT (13) 

To T 

Where L = normal molar heat of fusion for ice 

Cpw > Cpi = molar heat capacities at constant pressure of water and ice, 

respectively 

From equations 12 and 13, we obtain 

L T T Cpw " Cpi 

= -(To-T) + JJ dTdT (14) 

n.w To TgTg T 

The double integral term is small and can be neglected [17]. Since the density 

of water is the molecular weight per molar volume and the heat of fusion of 

ice per unit mass is the molar heat of fusion divided by the molecular weight, 

equation 14 is further reduced to [18] 

% 
ri.w = (15) 

PwA.(TO- T )  

Where Pw = density of water at temperature T 

X = normal heat of fusion of ice per unit mass 

Equation 15 provides the relationship between equilibrium temperature T and 

the radius of curvature of ice/water interface, r;,w, in a capillary. Freezing of 
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ice in the capillary will occur if the radius of curvature is equal to the pore 

opening. 

Proposed Two-Stage Model 

As stated earlier, the Powers' model of frost damage is valid as long as the 

concrete is below critical saturation. However, in near-saturated states, i.e., 

above critical saturation, greater stresses than those predicted by Powers are 

believed to develop within the structure because of the extrusion of ice during 

second stage bulk-ice-initiated freezing. 

The development of the two-stage model, proposed by Enustun and 

Bergeson [IS], is as follows: Consider the pore structure of concrete as an 

assembly of some globular macropores (pore cavities) on a background of 

freezable capillary pores and nonfreezable micropores (gel pores) 

interconnected as a network. The mechanism of freezing and thawing of pore 

water in such a structure is discussed by using a simplified model. Although 

this model is far from representing the actual complicated conditions in the 

field, it illustrates the mechanistic cause of frost damage as well as the role of 

the presence of air in the pores, which will be discussed later. Some 

complications that arise in practice do not change the conclusions from a 

fundamental point of view. These complications are the presence of pores of 

assorted sizes, irregular interconnections, and supply of external water. 

Consider a simple model of a solid sample containing a spherical cavity 

connected to the surface by tubular, freezable capillary pores as shown in 

Figure S. Let the sample be saturated with water and covered with a thin film 

of excess water at its surface. As the sample is cooled below 0 °C, the excess 
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^ K (x ^WATER 

Figure 5. Schematic representation of bulk-ice-initiated freezing of 
pore [15] 
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water is converted to bulk ice but the pore water remains unfrozen. Only at 

temperatures far below 0 *C will it freeze. 

By thermodynamic considerations, the temperature at which the 

freezing of a capillary pore occurs is related to the radius of its pore opening 

by 

2yro 
- t =  ( 1 6 )  

^ p w H . w  

in accordance to the plastic ice theory (refer to equation IS). The meaning of 

each variable was given in the preceding section. Neglecting the temperature 

dependence of y and pw> equation 16 can be written numerically as 

t = - 0.049/r (17) 

Here t is the temperature in *C and r is the pore radius in micrometers. The 

sample freezes from the surface, i.e., from the boundary of bulk ice/pore 

water at the surface, and bulk ice starts to form a convex ice front and moves 

inward. 

During and upon freezing, the pore structure is subjected to static and 

dynamic stresses. 

Under a given condition, there will be a pressure difference existing 

across the ice/water boundary. If the meniscus is within the capillary pores, 

then according to the Laplace equation this pressure difference is given by 

AP = 0.59/r (18) 
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where AP is the excess pressure, in atmospheres, in the ice phase relative to 

the liquid phase or tension in the liquid phase relative to the ice phase. For a 

capillary pore radius of 0.01 micrometer, the pressure difference is about 60 

atmospheres. Everett [19] attributed the frost damage to this static stress (such 

a pore freezes at about -S *C according to equation 17). 

Dynamic stresses develop as the ice meniscus virtually penetrates a 

capillary during the freezing process, because ice is extruded from the 

capillary in the opposite direction due to the volume increase that occurs upon 

freezing of water. The profile of stress developed inside a capillary along its 

length, X, under static and dynamic conditions at various stages of freezing 

and thawing is schematically shown in Figure 6. The full sloping lines 

represent the dynamic pressure in ice-occupied capillary space, and the 

horizontal lines represent the corresponding pressure in the liquid phase 

occupying the rest of the pore. The vertical lines indicate the pressure drop 

across the ice/water boundary. 

As can be seen, a large pressure gradient develops along the ice path 

during freezing because of the extrusion of ice having very high viscosity. 

The magnitude of this pressure, which depends on the rate of freezing and the 

dimension of the ice path, is difficult to assess because of the lack of reliable 

data on viscosity of ice in literature. 

When ice thaws, the process reverses and stresses become tensile. The 

magnitude of compressive and tensile stresses represented in this figure is 

based on the assumption that freezing and thawing proceed at the same rate. 

At a given stage, the absolute magnitude of the maximum thawing stress is 

larger than the freezing stress by an amount equal to static stress. 
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STATIC ICE PRESSURE = 0 
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STATIC PORE WATER PRESSURE 

ICE WATER : 

Figure 6. Static and dynamic stresses developed in a cylindrical capillary at 
various stages of freezing and thawing [15] 
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Obviously, the concrete is subjected to fatigue because of cyclic loading 

caused by freezing and thawing. This makes it more vulnerable to destruction. 

When the ice meniscus reaches the macropore cavity during freezing, 

the dynamic compressive stress becomes particularly large because freezing 

of the cavity is thermodynamically spontaneous at low ambient temperature. 

Powers also considered dynamic stress as the main cause of frost damage 

in concrete. However, he did not associate this stress with the extrusion of ice 

but rather with the extrusion of the excess volume of water from the freezing 

pores. 

Accordingly, the protection of concrete from frost damage by entrained 

air is believed to be due to minimizing this dynamic stress by the presence of 

empty air pockets in close vicinity of the freezing pores. Powers et al. [59] also 

dealt with the migration of unfrozen pore water drawn by bulk ice ultimately 

formed in those large air voids. 

What Powers et al. ignored is the possibility of bulk-ice-initiated 

freezing following in situ nucleated freezing, in spite of some air initially 

present in the pores. Bulk-ice-initiated freezing may occur when concrete is 

in near-saturated states, and it involves dramatically more intense dynamic 

stresses than those considered by Powers because of the extrusion of ice 

towards bulk ice as described earlier. 

To distinguish the bulk-ice-initiated freezing mechanism from the 

mechanism dealt with by Powers, it must be noted that the pore structure 

illustrated in Figure 5 repeats itself many times in a surface-dry laboratory 

sample in the fashion shçwn in Figure 7. Figure 7a represents an increment 

of this structure in the interior of a sample far from saturation. Here the 
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Figure 7. Schematic representation of the freezing mechanism of 
pore water as a function of saturation [15] 
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circular volumes are the pore cavities, and the tubular interconnections are 

freezable capillary pores. The rest of the volume contains gel pores filled 

with water which are not shown in the figure. The dashed areas represent 

water-occupied space, the blank circular areas represent air voids, and the 

cross-hatched areas represent ice. 

When temperature drops below freezing, and if there is no bulk ice 

formed on the surface or in large pockets in the interior of the sample, 

freezing should depend only on in situ nucleation in water-filled pore cavities. 

As ice is formed in these cavities, the excess volume of water brought 

about by expansion upon freezing is expelled into nearby air voids through 

unfrozen capillary pores and gel pores. This causes the air to be compressed, 

as shown in Figure 7b. This figure illustrates the situation in which the ice 

crystals are fully grown as far as their envelopes allow. Until this stage is 

reached, the structure is subjected to some dynamic stresses as considered and 

treated by Powers. In contrast to ice formed by bulk-ice-initiated freezing, 

there exists a considerable amount of unfrozen freezable water in the pore 

space in equilibrium with ice formed by in situ nucleation. If it is assumed 

that the compressed air does not find its way out of the sample at this stage, the 

sample should not exhibit any substantial volume change except a minute 

dilation due to internal stress [56]. However, if the saturation is increased 

above a critical level, as is shown in Figure 7c, the volume will change 

dramatically. The critical level is reached when upon freezing, the excess 

volume of water is just accommodated in the empty air voids and it freezes 

there (Figure 7d). Implicit in this argument is the assumption that the air in 
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these cavities will ultimately disappear as water freezes, through dissolution in 

the unfrozen pore water as a result of compression. 

As saturation is increased by any amount above the critical level, the 

excess volume of water due to freezing is forced as far as the surface of the 

sample. There the excess water freezes to form bulk ice. This action should 

trigger the freezing of the rest of unfrozen freezable water in the entire pore 

structure as shown in Figure 7e. The final step should cause the sample to 

suffer far greater dynamic stresses than in the first step (in situ nucleated 

freezing) described earlier. It is believed that the second step is responsible 

for frost susceptibility of concrete in near-saturated states. This step also 

brings about an easily measurable volume increase because of the extrusion of 

some ice out of the pores to the sample surface. 

At a given temperature, if ((> is the fractional expansion of water upon 

freezing and f is the ratio of pore water frozen by in situ nucleation to that 

freezable by bulk-ice-initiated freezing, the critical degree of saturation, Xq% , 

of freezable pore volume can be calculated from 

and the percent of volume change, Vg%, on the basis of freezable volume from 

Xc = 100/(1 + f*) (19) 

Vc = 100(1- # (20) 

As the degree of saturation, X, increases from Xg to 100%, the percentage of 

volume change, V, varies ' linearly from Vg to 100<j). 
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Some experimental observations to support this model as well as an 

example of numerical application of these equations are now presented. 

Two identical, completely saturated air-entrained samples of cement 

pastes cast in U-tubes were prepared, and their electrical conductance was 

measured as they were cooled step-wise to freezing [IS]. Both were covered 

with bulk water. The first sample was totally immersed in a freezer bath to 

form bulk ice externally. The second sample was partially immersed to avoid 

formation of external bulk ice, and instead the sample was forced to freeze by 

in situ nucleation. The freezing points, as well as the extent of freezing, were 

monitored by the drops in conductance. It was observed that the initiation of 

freezing in the first sample depended on the formation of bulk ice on the 

surface either by seeding or spontaneous freezing. The second sample was 

observed to freeze at a temperature a small fraction of a degree below the 

spontaneous freezing point of the fîrst sample. At -11 *C, bulk ice formed and 

triggered freezing of 66.5% of the total water content of the first sample, 

whereas in situ nucleation froze only 32.8% of that in the second sample. This 

means that only 49% of the pore water freezable by surface bulk-ice-initiated 

freezing froze when in situ nucleation freezing was forced. When the 

temperature was further lowered, freezing progressed in the first sample, 

whereas practically no further freezing was observed in the second sample. 

These observations support the model as depicted in Figure 7d both in 

terms of the pore structure and the extent of freezing. Specifically; (a) 

freezable pores form a continuum in the entire matrix, and (b) freezable water 

only partly freezes in the absence of bulk ice. This partially frozen water 
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leaves the rest of the pore water unfrozen and does not behave as a plastic 

mass available to induce further freezing as considered by Everett [19,20]. 

The measurements made from the cement paste also allow us to assign a 

numerical value to the critical degree of saturation, and its corresponding 

volume change, Vg. If f = 0.49 and <|) = 0.082 at -11 *C, then using equations 19 

and 20, the critical saturation and the volume change is 96% and 4.2%, 

respectively. The volume change versus saturation is shown in Figure 8. 

Recent dilarometric measurements made with a mercury dilatometer on a 

mortar sample of low water/cement ratio appear to be compatible with this plot. 

It was observed that no measurable volume change occurred on freezing 

down to -30 *C at a saturation of 90.5% in spite of some bulk ice on the surface; 

whereas at -11 *C and 100% saturation, the volume change was 8.2% relative to 

the total freezable pore volume. 

It follows that in near-saturated states, the magnitude of volume change 

upon freezing, which is also an indication of the extent of bulk-ice-initiated 

freezing, should be a measure of the driving force of frost damage. If all 

variables are kept the same and saturation is increased, this model requires 

that concrete should become frost susceptible abruptly at critical saturation 

approaching 100%. This has indeed been observed experimentally as shown in 

Figure 9. 

Powers' model also requires a threshold saturation level above which the 

excess water expelled from the freezing pores must travel through the 

unfrozen micropores all the way to the exterior surface of the sample, since 

there is no room to accommodate it in the interior. This is also a potential 

source of frost damage. But in this case the damage would be proportional to 
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Figure 8. Expected change of volume of cement paste on freezing at -11 'C 
as a function of saturation and expressed on the basis of the pore 
volume frcezablc at -11 *C [15] 
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the volume of excess water. For instance, if 90% were the critical saturation as 

implied by the plot in Figure 9. the experimental points at higher saturation 

would be expected to fall around the dashed line drawn in this figure 

according to Powers' model, but would not fall strikingly below it. In other 

words. Powers' model based on one-stage freezing can not explain the observed 

abruptness in frost resistance in near-saturated states, while the two-stage 

model described above does. 
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RESEARCH OBJECTIVES AND EXPERIMENTAL PROGRAMS 

This dissertation research has three objectives. The first is to investigate 

the applicability of the proposed two-stage model. The second is to investigate 

the possibility of correlating the measured dilatometric volume increase upon 

freezing of a sample in near-saturated states to frost damage caused by freeze-

thaw cycles. The third is to study the rate of water uptake of samples and to 

combine these data with the dilatometric data to predict the performance of 

concrete. The ultimate goal is that a quick, simple, economical and reliable 

laboratory testing method can be devised to predict the performance of 

concrete without resorting to the tedious and presumably less reliable 

standard freeze-thaw testing. 

To accomplish the first objective, the work plan included dilatometric 

measurements with plain and air-entrained mortar and concrete samples with 

varying levels of saturation. For mortar samples, the water/cement ratios 

chosen were 0.43, 0.50, and 0.60, keeping all other compositional variables 

constant. For concrete samples, three different types of coarse aggregate were 

chosen, while keeping the other variables constant. The composition of the 

mortar fraction of these samples was chosen to be the same as the mortar 

samples with 0.43 water/cement ratio. The work plan also included plotting 

the dilatometric volume change versus levels of saturation for each sample 

and determining the critical saturation, which is defined as the saturation 

level above which a measurable dilatometric expansion is observed. If the 

plots are similar to that proposed, i.e., if the plots signify a sharp critical 

saturation point, then the model is verified. If the plots indicate a threshold 
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saturation rather than a sharp critical saturation, as was shown in Figure 8 by 

the dotted line, it means that freezing of pore water does not proceed beyond 

the first stage irrespective of level of saturation. 

To accomplish the second objective, the research consisted of a 

systematic study of the frost damage on the samples at various saturation levels 

subjected to a number of freeze thaw cycles, by a suitable method such as 

following the shift in their pore structure caused by such a cycling, and 

correlating these data with the dilatometric measurements mentioned above. 

The third objective called for studying the rate of saturation of all 

samples in an immersed state, then combining these data with the dilatometric 

expansion data in a rational way. so that a frost susceptibility index can be 

assigned to each sample, and examining the variability of this index. 

The research was divided into three phases; 

1. Rate of water uptake experiments - samples were submerged in water 

and the amount of water absorbed were determined gravimetrically. 

2. Dilatometric expansion experiments - samples were subjected to 

dilatometric measurements at various levels of saturation as they were frozen 

at -20 C. 

3. Pore structure and pore size distribution - Studies were based on 

earlier findings that the concrete showed a consistent and progressive shift in 

pore structure upon freezing and thawing in near-saturated states. It was 

considered that this shift might be used to measure frost damage. Therefore, 

samples were subjected to phase transition porosimetry to establish their pore 

structure and pore size distribution before and after being subjected to a 
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number of freeze-thaw cycles at selected subcritical and supercritical 

saturation levels. 

The aggregates used in lab concrete samples were tested similarly as lab 

concrete and mortar samples to understand how predictable are the properties 

of concrete from the properties of mortar and aggregate. 
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MATERIALS AND EXPERIMENTAL PROŒDURES 

Materials Preparation and Mix Design 

Mortar 

Six different batches of portland cement mortar mix were prepared and 

ten identical samples of each mix were molded in 1" diameter plastic vials, with 

the same cement/aggregate ratio in each batch. The first three mixes were 

plain (P) mortars at different water/cement ratios and the second three mixes 

were their air entrained (A) counterparts. The volumetric mix proportions for 

the plain and air-entrained samples are given in Appendix A. The portland 

cement used was Lehigh Type I. The fine aggregate was a sand obtained from 

Cordova quarry in eastern Iowa. Protex air entraining agent was used. 

Consolidation was done by rodding while the mortar was slowly poured into the 

plastic vials, and by tapping the side of the vial gently to eliminate any large 

entrapped air bubbles. Air content was determined using a volumetric 

method. Target air content was set at approximately 4%. Samples were cured 

in water at room temperature for 28 days before unmolding. After curing, 

samples were cut to a 1" height and air-dried until testing. 

Lahoratorv concrgtc 

Three types of coarse aggregate were used in this study to represent a 

range of aggregate physical and chemical characteristics. They were from 

the Garrison, Alden, and Lamont quarries. The Alden aggregate is a 

Mississippian Age, clean, coarse grained limestone with an open, well 

developed pore system. Iowa Department of Transportation (IDOT) durability 

factors for this aggregate are in the 90-98% range and it is expected to 

perform satisfactory for at least 20 years in concrete. The Lamont aggregate is 
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a Silurian Age, clean, coarse-grained dolomite with an open, well developed 

pore system. Durability factors for this aggregate are above 94% and it is also 

expected to perform satisfactory for at least 20 years in concrete. The Garrison 

aggregate is a highly porous dolomite containing disseminated pyrite. 

Durability factors for this aggregate are in the 80-90% range. It is classified 

by IDOT as Type II aggregate and is expected to perform satisfactory for 10-20 

years. All aggregate sampling was from IDOT approved stockpiles of concrete 

aggregate from the respective sources. Fine aggregate used was a sand from 

Cordova. Type I cement (IDOT Blend R-ll-Z) was used. For air-entrained 

concrete, Protex AES air entraining agent was used. 

Coarse aggregates obtained were of 3/4 in. to 1 in. nominal size. To 

reduce them to different sizes, the aggregates were processed through a jaw 

crusher and separated by a Gilson mechanical screening unit on 3/8 in., #4, 

#8 and #10 sieve sizes. The individual size fractions of coarse aggregate were 

soaked in clean water for 24 hours and then stored in humidity room. Prior to 

use, excess water was drained. The different sizes of coarse aggregate were 

then brought to a saturated surface dry condition. Individual sizes of coarse 

aggregate were then proportioned to meet ASTM #8 grading of coarse 

aggregate for concrete, and prepared for batching. Fine aggregate was 

maintained in an air-dry condition. The amount of absorption of fine 

aggregate was taken into account when determining the amount of mixing 

water. 

IDOT C-3 mix proportions were used for the concrete mix design, with the 

plastic air content targeted to be in the range of 6-9%. Air content was 

determined volumetrically using a Roll-A-Meter. In order to simulate field 
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mixing conditions, concrete mixing was done in a 1.5 cubic foot mixer. Mixes 

were "over-mortared" to account for drum adherence. All batches were mixed 

and cured according to ASTM C-192 "Making and Curing of Concrete Test 

Specimens in the Laboratory", with the exception that samples were first 

rodded and then consolidated on vibration table to achieve proper 

consolidation. The plastic concrete properties, volumetric mix proportions, 

and strength test (3"x3"x3 1/2" prisms) data are given in Appendix B. The 

strength test results are based on the average of three samples. After 90 days 

curing, one inch diameter cores were obtained from 3"x3"xl6" prisms using a 

drill press mounted core barrel. They were then trimmed to approximately 

one inch height and ready for testing. 

Aggregate 

Quarry stone rock samples were obtained from the respective quarries. 

One inch diameter cores were obtained by using a drill press and core barrel. 

Cores were then trimmed to one inch height. 

Apparatus and Experimental Procedures 

Rate of water uptake experiments 

Considering that the attainment of absolutely 100% saturation is 

extremely difficult and time consuming for practical purposes, the following 

conditions were set as a reference saturated state for each sample: samples 

were vacuum saturated by pumping out air for IS minutes under a vacuum of 

27 inches of mercury, they were then flooded with water for 10 minutes, stored 

in a water bath at room temperature for 3 days, and surface dried and weighed 

to determine their saturated weight. The samples were then dried in a 
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microwave oven for fîve minutes and reweighed to determine their dry 

weight. This method proved to be a convenient method of drying to a constant 

weight without losing any water of hydration. 

Actual water uptake experiments were conducted by submerging the dry 

samples in a deionized water bath at room temperature and detenriining their 

weights, after surface drying with a paper towel at various time intervals. The 

percent water absorption was then expressed relative to the reference 

saturated state. 

Dilatnmetric expansion experiments 

Each sample was first vacuum-saturated with water as described above, 

and surface dried. The sample was then placed in the dilatometer cup. The 

dilatometer was assembled and filled with mercury through the inlet until the 

mercury reached the end of the stem. The dilatometer was then placed in a 

cryostat and maintained at +8 *C. When thermal equilibrium was established, 

the mercury level was reset and the test was initiated by turning control over 

to a computer. A schematic diagram of the mercury dilatometer is given in 

Figure 10. 

The expansion measurement was fully computerized. The system consists 

of a mercury dilatometer made of stainless steel, a cryostat, an Apple lie 

computer, two interfaces for temperature and volume measurements, and a 

plotter. The software; (a) controls the cryostat temperature, cooling the 

dilatometer containing the sample from +8 *C to -20 °C at a rate of S *C per 

hour, (b) collects volume and temperature data during cooling, and (c) 

extrapolates the initial volume data in the range of +8 *C to 0 'C, then to 
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Figure 10. Mercury dilatometer 
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-20 *C, computes the difference between the collected volume data at -20 °C, 

and extrapolated value at the end of run. The temperature measuring 

interface utilizes the resistance of a thermistor inside the dilatometer, while 

the volume measuring interface uses the capacitance of the condenser 

consisting of a mercury thread in the dilatometer stem with an aluminum 

shield around it. Detailed discussions of the system and procedures are given 

by Eckrich et al. [14]. After each run, the percent of expansion was calculated 

and the sample was let to partially dry to a desired lower saturation for the 

next run. By reducing the level of saturation progressively, the change in 

volume of the sample was measured. The volume change upon freezing was 

plotted against saturation to determine critical saturation and to investigate 

the applicability of the proposed model. 

Porg Structure and pore size distribution 

Before dilatometric expansion experiments, fully saturated samples were 

subjected to phase transition porosimetry to determine their pore structure 

and pore size distribution. The procedures for pore size distribution analysis 

are essentially similar to those described in the dilatometric expansion 

experiment. Because dissolved salts in cement mortar pore water also will act 

to depress the freezing point, blank samples of extracted pore water were 

tested and the effect found to be small, with a freezing point depression from 

this cause less than 1 °C. Analyses were done at zero cycle and also after 

samples had been subjected to 60 freeze-thaw cycles for mortar samples and 

100 freeze-thaw cycles for concrete and aggregate samples at a selected 

subcritical and supercritical saturations. The subcritical and supercritical 

saturations used for mortar samples were 87% and 95%, respectively. For 
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concrete samples, the subcritical saturation was set at 70%, and the 

supercritical saturation was set at 90%. For aggregate samples, the subcritical 

saturation was set at 30%, and the supercritical saturation was set at 70%. 

Freeze-thaw expcrimcntS 

Samples were first vacuum saturated and then evaporated to arrive at the 

desired saturation by following their weight loss. Once they had reached the 

desired saturation, they were immersed in toluene in indivudual weighing 

bottle to prevent moisture variations. Samples were then immersed in the 

cryostat. Freeze-thaw cycles on the samples were then initiated with a cooling 

and warming rate of 15 *C per hour, between +8* and -20 C. 
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RESULTS AND DISCUSSIONS 

Followings are the results arranged and discussed according to the 

experiments conducted. The discussion on the applicability of the proposed 

model is given in the "Dilatometric Expansion" section. 

Rate of Water Uptake 

Figure 11 shows the progress of absorption for each mix of plain and air-

entrained mortar samples at various water/cement ratios. The percent of 

absorption was determined based on the total pore volume, as explained in the 

experimental procedures. These data indicate that the plain samples acquire 

water at a higher rate than their air-entrained counterparts. For example, 

consider the mortar sample with a water/cement ratio of 0.60. It takes about 2 

days for the plain sample to reach 90% saturation whereas it takes about 20 

days for the air-entrained sample. These data indicate that incorporating 

entrained air bubbles much larger than the gel and capillary pores originally 

existing in the matrix may act to retard the saturation rate because it is more 

difficult to saturate larger air voids than smaller air voids by capillarity. 

Figures 12 and 13 show the effect of water/cement ratio upon the rate of 

water absorption. It appears that the retarding effect of air-entrainment 

decreases as water/cement ratio increases. The reason may be that, at high 

water/cement ratios, segregation and bleeding takes place which increases the 

the size of capillary channels, thus increasing the permeability and the ease 

of water uptake. Although the capillary suction also decreases as capillary size 

increases, the former effect apparently predominates. For plain samples, no 

significant difference is observed as indicated on Figure 12. 
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At this point it is appropriate to clarify the meaning of the rate of 

saturation that appears to be reduced by the presence of entrained air in 

concrete. Entrained air may or may not reduce the absolute rate of water 

absorption. What it reduces is the rate of saturation, relative to the total pore 

volume, simply by increasing the total pore volume. It must be noted that it is 

the relative saturation level that is crucial in problems related to frost 

susceptibility both in Powers' treatment and the proposed model. 

Figure 14 shows the rate of absorption for plain and air-entrained 

concrete samples. The same trend that has been observed in mortar samples is 

observed here except that in general the rate is lower for plain samples. This 

may imply that coarse aggregate has an influence on the rate of absorption of 

plain samples. Since the rate of absorption of aggregate is considerably lower 

than the rate of plain mortar samples, it apparently helps to reduce the 

absorption rate. For air-entrained concrete, no significant change in the rate 

is observed, since the rate of absorption of aggregate is very close to the air-

entrained mortar samples. 

Figures 15 and 16 show the effect of different types of coarse aggregate 

on the rate of water uptake. It appears that the effect of different types of 

coarse aggregate on the rate of water uptake is minimal for both plain and air-

entrained concrete. 

Figure 17 shows the rate of absorption for the three different types of 

coarse aggregate that were incorporated in concrete as determined from 

blocks of quarry stone. The stone received from Lamont quarry appeared 

highly weathered and is not considered representative of the coarse aggregate 

used in the concrete. It is more porous and perhaps contains larger voids. 
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As can be seen. Lament aggregate has the lowest rate of absorption. 

Examination of the pore structure (Appendix E) of Lamont aggregate indicates 

that it contains a larger total pore volume and larger air voids than the Alden 

and Garrison aggregate. Alden and Garrison aggregate have a very similar 

pore structure, and they also seem to have the same rate of absorption. 

Visual comparison of the rate of absorption of mortar, aggregate, and 

concrete samples seems to indicate that they have a proportional effect. That 

is, the rate of absorption of concrete is proportional to the rate of absorption 

of aggregate and mortar, independently. A relationship was derived to relate 

the rate of absorption of concrete as a function of the rate of absorption of 

mortar and aggregate. It was derived assuming that the rate of absorption of 

concrete is a linear combination of the rate of absorption of its mortar and 

aggregate components. Derivation of the relationship is given in Appendix C. 

It seems that the concept of proportional effect is not applicable in the case of 

absorption of concrete. As shown in Appendix C, the theoretical predicted 

values do not agree with the actual values. They are either lower or higher 

than predicted. 

Dilatometric Expansion 

The plots of dilatometric expansion versus level of saturation for mortar 

and concrete samples are given on Figures 18-23. The theoretical predicted 

relation for two of the samples (P43 & A60) are shown by the dashed lines on 

Figure 18. Typical dilatometric plots of volume change versus temperature to 

determine dilatometric expansion, on freezing at -20 "C, for one of the samples 
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are given in appendix D. It appears that the observed critical saturation levels 

are lower than predicted, and the expansions are higher on the whole. 

The trends of variations of expansion with saturation level for some of the 

samples resemble the theoretical trend but some do not. The deviations from 

the theory may be due to the air in the pores being more persistent than was 

assumed. That is, reduction in the volume of pore air through dissolution in 

pore water may not keep up with the rate of freezing. As a result, the excess 

volume of water formed upon freezing would be partly forced out to the 

exterior of the sample at high levels of saturation. This appears to be 

occurring in spite of the existence of "escape boundaries" within the sample. 

Also, considering that the theory was based on the observations from cement 

paste, the deviations could be due to the fine aggregate in mortar, and fine and 

coarse aggregates in the concrete samples. 

The critical saturation of mortar ranges from 75% to 93% as indicated on 

Figure 18. Air-entrained samples generally have a lower critical saturation 

level and exhibit higher expansion than plain samples. The effect of 

water/cement ratio on the rate of absorption is shown on Figures 19 and 20. It 

appears that the mix with 0.50 water/cement ratio exhibits the highest 

expansion and lowest critical saturation level. This may indicate that there is 

an optimum water/cement ratio, below which the expansion is lower, and 

above which the critical saturation is higher. 

Figures 21-23 show the plots of dilatometric expansion of concrete 

samples versus level of saturation. The trends of variations of expansion with 

saturation level for these concrete samples appear more closely resemble the 

proposed theoretical trend than the mortar samples. Generally, critical 
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saturation is lower and expansion is higher in air-entrained versus plain 

samples except in the Lamont mix, where the expansion is lower for the air-

entrained sample. The effect of different types of coarse aggregate on 

expansion and critical saturation is also obvious. 

At this point it is appropriate to discuss the effect of sample size. 

Obviously, the smaller laboratory samples used in the above experiments are 

not quite representative of the actual field concrete. These samples represent 

more "severe" conditions since their total surface area, relative to the total 

volume of the sample, exposed to water and freezing temperature is larger. 

The aggregates have a very low level of critical saturation as is shown 

on Figure 24. The Garrison aggregate exhibits the highest expansion and 

critical saturation level. The trends of variations of dilatometric expansion 

with level of saturation for these aggregates are different from the proposed 

model. This may indicate that the freezing mechanism of pore water in 

aggregate is different from that of concrete and mortar. This is probably due 

to the difference in their pore structure. 

Pore Structure and Pore Size Distribution 

Pore size distribution studies of mortar samples before and after they had 

been subjected to 60 freeze-thaw cycles show that there is a shift in pore 

structure (Figures 25-27). 

Figure 25 shows the pore size distributions of the control sample 

obtained from phase transition porosimetry. Figure 26 shows the results of a 

duplicate sample subjected to freeze-thaw cycling at 87% (subcritical) 

saturation. Figure 27 shows the results of the control sample after freeze-thaw 
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cycling at 95% (supercritical) saturation. Comparing these data, one can 

conclude, for mortar of this compositions that: 

(a). Pore neck sizes do not appear to be an indicator of frost damage, 

because they do not exhibit a detectable change after freezing and thawing. 

(b). On the other hand, pore bodies go through a consistent change 

upon cycling. The pore body peak shown on Figure 25 at about 150 A radius 

undergoes a significant change after freeze-thaw cycling at 95% saturation, 

and exhibits a bimodal distribution with a new tall peak at about 700 A, as 

shown on Figure 27. At 87% saturation, the change is similar. 

The second observation appeared to be promising in the use of the pore 

body size shift as a measure of frost damage. However, after review of all pore 

size distribution curves, obtained with the original and cycled plain and air-

entrained mortar samples of various water/cement ratios at 87% and 95% 

saturations (Appendix E), it was observed that this observation was 

inconsistent: Each different sample exhibited its own characteristic shift in 

different regions of the pore size range. It was concluded that it was not 

possible to use any specific shift to measure the extent of frost damage on all 

samples as a comparative measure. Nor did the shift in median pore sizes work 

for this purpose. Therefore, this method of assessing frost damage was 

abandoned in favor of another method which is based on the permanent 

expansion of samples upon freezing and thawing, as explained in the next 

section. 
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Permanent Expansion upon Freezing and Thawing 

After samples had been subjected to freeze-thaw cycling, their 

permanent expansion (volumetric) was measured by mercury displacement. 

The permanent expansion was obtained after the samples had been subjected 

to 60 freeze-thaw cycles for mortar samples and 100 freeze-thaw cycles for 

concrete samples. Percent expansion is then expressed based on their initial 

volume. Results are given in Table 2. All samples exhibit permanent 

expansion after freeze-thaw cycling. However, samples with saturation above 

critical levels (supercritical) show more significant expansion. 

Reasonably good correlations were obtained between the dilatometric 

expansion and permanent expansion for mortar and concrete samples as 

shown on Figure 28. It is interesting to observe that the regression line in 

both cases has a finite intercept. It is 3% for mortar and 1% for concrete 

samples. This signifies that at zero dilatometric expansion, i.e., below critical 

saturations, the samples suffer some frost damage apparently through the 

mechanism considered by Powers. However, especially in concretes, the 

magnitude of this residual damage is almost insignificant. This indicates that 

significant frost damage is primarily caused by bulk-ice-induced freezing at 

supercritical saturations, as put forward in the proposed model. 

Prediction of Performance 

From the rate of absorption and dilatometric expansion data, 

relationships were established between dilatometric expansion and immersion 

time as shown on Figures 29 and 30. These relationships were obtained by 

combining the dilatometric expansion versus saturation and the rate of 
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Table 2. Permanent expansion of mortar and concrete samples at various 

saturation levels after being subjected to 60 and 100 freeze-thaw 

cycles, respectively 

Sample W/C Type Coarse Saturation, % Expansion, % 
ratio agg. 
(%) actual critical dilatometric permanent 

Mortar 0.43 Plain 87 91 0 2.73 
Mortar 0.43 Plain 95 91 0.36 4.44 

Mortar 0.43 Air 87 78 0.40 6.23 
Mortar 0.43 Air 95 78 0.81 5.01 

Mortar 0.50 Plain 87 90 0 2.64 
Mortar 0.50 Plain 95 90 0.28 4.98 

Mortar 0.50 Air 87 75 0.37 5.64 
Mortar 0.50 Air 95 75 0.76 6.22 

Mortar 0.60 Plain 87 88 0 2.87 
Mortar 0.60 Plain 95 88 0.10 3.62 

Mortar 0.60 Air 87 93 0 2.87 
Mortar 0.60 Air 95 93 0.11 7.13 

Concrete 0.43 Plain Alden 70 80 0 1.71 
Concrete 0.43 Plain Alden 90 80 0.29 4.33 

Concrete 0.43 Air Alden 70 81 0 0.58 
Concrete 0.43 Air Alden 90 81 0.56 4.98 

Concrete 0.43 Plain Garrison 70 80 0 1.44 
Concrete 0.43 Plain Garrison 90 80 0.37 4.47 

Concrete 0.43 Air Garrison 70 76 0 0.46 
Concrete 0.43 Air Garrison 90 76 0.47 4.92 

Concrete 0.43 Plain Lamont 70 85 0 0.55 
Concrete 0.43 Plain Lamont 90 85 0.52 3.85 

Concrete 0.43 Air Lamont 70 80 0 0.31 
Concrete 0.43 Air Lamont 90 80 0.33 4.39 
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mortar and concrete samples 
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absorption (saturation) versus immersion time data, taking advantage of the 

saturation as their common variable. Using the regression lines between 

dilatometric and permanent expansions presented earlier, relationships were 

also obtained between permanent expansion and immersion time. These 

relationships are shown on Figures 31 and 32 by the full curves. The dashed 

lines are the extrapolation of these curves (full) towards zero immersion time, 

i.e., below critical saturations. These extrapolations were made assuming that: 

(a) the Powers' model is in operation in these regions, i.e., the damage is 

caused by in situ nucleated freezing, and is proportional to the amount of 

excess water displaced from the frozen pores in the interior of the sample, and 

(b) the pore water which can freeze by this mechanism at -20 °C is only 

that is in excess of 56% saturation, as previously observed with a freezing 

sample of air-entrained cement paste by electrical conductance measurements 

[15]. 

It is noted that for the concrete samples, the air-entrained mix with 

Alden aggregate does not appear on Figures 30 and 32, since there is no 

dilatometric expansion at the length of immersion time considered. It can be 

seen that the permanent expansion of plain mortar and concrete samples is 

smaller at the early stage of immersion, since their saturation level is below 

the critical. Once the saturation reaches the critical level, the permanent 

expansion of plain samples increases substantially. This indicates that at 

saturation levels above the critical, bulk-ice-initiated freezing comes into 

play. As expected, at any stage of immersion, the permanent expansions of 

air-entrained mortar and concrete samples are significantly less and increase 

at a much slower rate than their plain counterparts. In general, the concrete 
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samples suffer less damage than the mortar samples. The reason may be that 

the coarse aggregate in concrete is capable of elastic accommodation of the 

expansion. 

At early stages of immersion, while plain samples begin to suffer 

significant frost damage due to rapid attainment of supercritical saturation, 

which results in the extrusion of ice during freezing, the air-entrained 

samples suffer only slight damages presumably through the Powers 

mechanism. However, upon prolonged immersion, air-entrained samples also 

exhibit some ice extrusion on freezing and subsequent damage, although they 

are still far from fully saturated state and, therefore, contain substantial 

amounts of air voids to act as "escape boundaries". 

It follows from the results presented so far that the dilatometric 

expansion upon freezing is the primary cause of significant frost damage and 

that the attainment of supercritical saturation is its prerequisite. The 

probability that a given concrete in the field suffers frost damage is, 

therefore, proportional to the probability of occurrence of such a saturation 

state during the freezing season. On the other hand, the latter probability is 

obviously controlled by the rate of saturation and the availability of water. As 

expressed earlier, frost susceptibility can be evaluated by a suitable 

combination of dilatometric expansion and rate of saturation data. 

The most direct and simplest approach appears to be measuring the 

dilatometric expansion as a function of immersion time, rather than resorting 

to two different types of experiments and combining the data. The time-

average of such dilatometric data, obtained by a set of measurements of a 

suitable duration, might serve as an index to compare various samples with 
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each other, regarding their frost susceptibility. This tentatively suggested 

time-average is determined by calculating the area under the dilatometric 

expansion versus immersion time curve for a specified duration from the 

beginning of the test. As an example. Table 3 gives the time-average of 

dilatometric expansion of concrete samples after 28 days of immersion. 

Table 3 The time-average of dilatometric expansion of concrete samples after 

28 days of immersion in water 

Sample Time-average IDOT Serviceability 

durability factor, % in years 

Alden - air 0 90-98 >20 

Alden - plain 1.13 - -

Garrison - air 0.40 80-90 10-20 

Garrison - plain 1.65 - -

LamoRt - air 0 >94 >20 

Lamont - plain 6.54 - -
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CONCLUSIONS 

The following conclusions can be made based on the experimental 

results obtained: 

(1). For mortar samples, the trends of variations of expansion with 

saturation level for some of the samples resemble the theoretical trend but 

some do not. For concrete samples, the trends appear to more closely resemble 

the proposed theoretical trend than the mortar sample. The critical saturation 

levels are lower and the observed expansions are generally larger than 

expected, for both mortar and concrete samples. The deviations from theory 

may be due to air in the pores being more persistent than was assumed in the 

theory. 

(2). Air-entrainment appears to simply reduce the rate of saturation 

relative to total pore volume. 

(3). Pore structure analysis results are not consistent enough to be used 
' I##»»" 

for measurement of frost susceptibility. 

(4). Permanent expansion of mortar and concrete samples, subjected to 

freeze-thaw cycles, seems to indicate that Powers' mechanism is operating at 

low levels of saturation (subcritical) and causing a mild damage, whereas at 

high levels of saturation (supercritical), the effect of bulk-ice-initiated 

freezing predominates and causes severe damage. 

(5). A reasonably good correlation was obtained between dilatometric 

and permanent expansion data. It follows that dilatometric expansion can 

possibly be used as a measure of frost susceptibility, if its dependence on 

immersion time is considered. 
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(6). A frost susceptibility index is suggested. It can be determined by 

taking the time-average of dilatometric expansion. This time-average is 

determined by taking the area under the dilatometric expansion versus 

immersion time curve for a specified duration fkom the beginning of the test. 

(7). A simple method is suggested to evaluate the frost susceptibility of 

concrete. This method consists of immersing a 1" diameter by 1" high concrete 

core in water, and monitoring its dilatometric expansion over a specified 

period of time and taking its time-average. 



www.manaraa.com

9 9  

ACKNOWLEDGMENTS 

I wish to express my sincere appreciation to my major professor. Dr. 

Kenneth Bergeson, for his invaluable guidance, encouragement, and 

assistance during this study. Thanks are also extended to my co-major 

professor. Dr. Richard Handy, for his suggestions and guidance. 

To my committee members. Dr. John Pitt, Dr. Richard Groeneveld. and Dr. 

Dah-Yinn Lee, I would also like to express my thanks and appreciation. 

To Dr. Enustun, thank you for everything. It was a real pleasure to work 

with you and to learn from your experience. 

To the staffs of Materials and Environmental Research Laboratory, your 

help and cooperation is greatly appreciated. 

To my parents, without whom I would not have gone this far in my 

education endeavor, I wish to express my greatest thanks and appreciation. 

Finally, I like to thank my wife. Ling, for her encouragement, tolerance 

and support during the course of this study. 



www.manaraa.com

1 0 0  

REFERENCES 

1. ACI Committee 201. Guide to Durable Concrete. Proc. J. of American 
Concrete Institute, 74 (Dec. 1977), 573-609. 

2. ASTM Designation C-666. "Standard Test Method for Resistance of Concrete 
to Rapid Freezing and Thawing." ASTM Annual Book of Standard, 04.02 
(1985), 403-401. 

3. ASTM Designation C-671. "Standard Test Method for Critical Dilation of 
Concrete Specimens Subjected to Freezing." ASTM Annual Book of 
Standard, 04.02 (1985), 420-425. 

4. ASTM Designation C-682. "Standard Recommended Practice for Evaluation 
of Frost Resistance of Coarse Aggregates in Air-Entrained Concrete by 
Critical Dilation Procedures." ASTM Annual Book of Standard, 04.02 
(1985), 429-434. 

5. Axon, E, O., L. T. Murray and R. M. Rucker. "Laboratory Freeze-Thaw Tests 
Versus Outdoor Exposure Tests." Highway Research Board, 268 (1969). 

6. Beaudoin, J. J. and C. Maclnnis. "The Mechanism of Frost Damage in 
Hardened Cement Paste." Cement and Concrete Research, 4, No. 2 
(1974), 139-147. 

7. Birger, W, "Model Describing the Process of Frost Deterioration." 
Preliminary report B49-61. Proc. RILEM International Symp. on 
Durability of Concrete, Building Research Institute, Prague, 1969. 

8. Butterworth, B. "The Frost Resistance of Bricks and Tiles - A Review." 
British Ceramic Society Trans., 1 (1964), 203. 

9. Cady, P. D. "Mechanisms of Frost Action in Concrete Aggregates." J. of 
Materials, 4, No. 2 (June 1969), 294-311. 

10. Collins, A. R. "The Destruction of Concrete by Frost." J. of Civil Engineers, 
23, No. 1 (Nov. 1944), 29-41. 

11. Conner, W. C., A. M. Lane and A. J. Hoffman. "Measurement of the 
Morphology of High Surface Area Solids: Hysteresis in Mercury 
Porosimetry." J. of Colloid and Interfacial Science, 100 (1984), 185-193. 



www.manaraa.com

1 0 1  

12. Cranston, R. W. and F. A. Inkley. "The Determination of Pore Structure 
from Nitrogen Adsorption Isotherms." Advanced Catalysis and Related 
Subjects, 9 (1957), 143-154. 

13. Dolch, W. L. "Porosity." Significance of Tests and Properties of Concrete 
and Concrete Making Materials. ASTM, STP 169A (1966), 443-461. 

14. Eckrich, J., B. V. Enustun and T. Demirel. "Phase Transition Porosimetry." 
American Laboratory, 18, No. 3 (March 1986), 80-92. 

15. Enustun, B. V. and K. L. Bergeson. "Frost Susceptibility of Concrete in 
Near-Saturated States." Proposal Submitted to NSF, 1988. 

16. Enustun, B. V., J. Eckrich and T. Demirel. "Phase Transition Porosimetry." 
Proc. of International Symp. Workshop on Particulate and Multi-Phase 
Processes and the 16th Annual Meeting of Fine Particle Society, Miami 
Beach, Florida, April 1985 

17. Enustun, B. V., H. S. Senturk and K. Kosal. "Freezing-Melting behavior of 
Capillary Water in Porous Materials." RILEM/ CIB Symp., Moisture 
Problems in Building, Helsinki Report 2-13 (1965). 

18. Enustun, B. V., H. S. Senturk and O. Yordakul. "Capillary Freezing and 
Melting." J. of Colloid and Interfacial Science, 65 (1978), 509-516. 

19. Everett, D. H. "The Thermodynamics of Frost Damage to Porous Solids." 
Transaction Faraday Society, 57 (1961), 1541-1551. 

20. Everett, D. H. and J. M. Haynes. "Capillary Properties of Some Pore Model 
Systems with Special Reference to Frost Damage." RILEM, Bull. No. 27 
(June 1965). 

21. Fagerlund, G. "The Significance of Critical Degrees of Saturation at 
Freezing of Porous and Brittle Materials." In Durability of Concrete. 
American Concrete Institute, SP 47-2 (1975), 13-66. 

22. Faulkner, T. and R. Walker. "Rapid One-Cycle Test for Evaluating 
Aggregate Performance When Exposed to Freezing and Thawing in 
Concrete." In Concrete Durability. Katharine and Bryant Mather 
International Conference, American Concrete Institute, SP 100-40 (1987), 
705-722. 

23. Fears, F. K. "Correlation between Concrete Durability and Air-Void 
Characteristics." Highway Research Board, Bull. 196 (1958), 17-24. 



www.manaraa.com

1 0 2  

24. Gayner, R. D. and R. C. Meininger. "Investigation of Aggregate Durability 
in Concrete." Highway Research Record 196 (1967), 25-40. 

25. Gordon, W. A. "Freezing and Thawing of Concrete - Mechanisms and 
Controls." American Concrete Institute Monograph No. 3 (1966), Detroit, 
Michigan. 

26. Haynes, J. M. "Frost Action as a Capillary Effect." British Ceramic Society 
Trans., 63, No. 11 (1964), 697-703. 

27. Helmuth, R. A. "Dimensional Changes of Hardened Portland Cement Pastes 
Caused by Temperature Changes." Proc. Highway Research Board, 40 
(1961), 315-336. 

28. Hill, R. D. "A Study of Pore Size Distribution." British Ceramic Society 
Trans., 59 (1960), 198-212. 

29. Hudec, P. "Deterioration of Aggregates - the Underlying Causes." In 
Concrete Durability. Katharine and Bryant Mather International 
Conference. American Concrete Institute, SP 100-68 (1987), 1325-1342. 

30. Hudec, P. "Durability of Rock as Function of Grain Size, Pore Size, and 
Rate of Capillary Absorption of Water." J. of Materials in Civil 
Engineering, 1, No. 1 (1989), 3-9. 

31. Kaneuji, M. "Correlation between Pore Size Distribution and Freeze-Thaw 
Durability of Coarse Aggregate in Concrete." Joint Highway Research 
Project, FHWA/IN/JHRP-78/15 (Aug. 1978). 

32. Kennedy, T. B. and K. Mather. "Correlation between Laboratory 
Accelerated Freezing and Thawing and Weathering at Treat Island, 
Maine." Proc. Journal of American Concrete Institute, No. 5 (Oct. 1951), 
141-172. 

33. Klieger, P. "Further Studies on the Effect of Entrained Air on Strength 
and Durability of Concrete with Various Sizes of Aggregates." Highway 
Research Board, Bull. No. 128 (1956), 1-19. 

34. Lane, D. and R. Meininger. "Laboratory Evaluation of the Freezing and 
Thawing Durability of Marine Limestone Coarse Aggregate in Concrete." 
In Concrete Durability. Katharine and Bryant Mather International 
Conference. American Concrete Institute, SP 100-67 (1987), 1311-1323. 

35. Larson, T. D. and P. D. Cady. "Identification of Frost Susceptible Particles 
in Concrete Aggregates." Highway Research Board, NCHRP Report No. 66 
(1969). 



www.manaraa.com

1 0 3  

36. Larson, T. D., A. Boettcher, P. D. Cady, M. Franzen and J. Reed. 
"Identification of Concrete Aggregates Exhibiting Frost Susceptibility -
Interim Report." Highway Research Board, NCHRP Report No. IS (1965). 

37. Larson, T. D., P. D. Cady, M. Franzen and J. Reed. "A Critical Review of 
Literature Treating Methods of Identifying Aggregates Subjected to 
Destructive Volume Change When Frozen in Concrete and a Proposed 
Program of Research." Highway Research Board Special Report 80 (1964). 

38. Lemish, J., E. Rush and C. L. Hiltrop. "Relationship of Physical Properties 
of Some Iowa Carbonate Aggregates to Durability of Concrete." Highway 
Research Board, Bull. 196 (1958), 1-16. 

39. Levitt, M. "An Assessment of the Concrete Durability by the Initial 
Absorption Test." Preliminary Report A29-42. Proc. RILEM International 
Symp. on Durability of Concrete, Building Research Institute, Prague, 
1969. 

40. Lewis, W. D. and W. L. Dolch. "Porosity and Absorption." Significance of 
Tests and Properties of Concrete and Concrete Making Materials, ASTM 
Spec. Pub. No. 169 (1956). 

41. Lewis, W. D., W. L. Dolch and K. B. Woods. "Porosity Determinations and the 
Significance of Pore Characteristics of Aggregates." Proc. ASTM, 53 
(1953), 949-962 

42. Lindgren, M. N. "The Prediction of Freeze-Thaw Durability of 
Coarse Aggregate in Concrete by Mercury Porosimetry." Joint Highway 
Research Project, FHWA/IN/JHRP-80/14 (Oct. 1989). 

43. Lowell, S. and J. E. Shields. Powder Surface Area and Porosity. New York: 
Chapman and Hall, 1984. 

44. Lyse, I. "Basic Questions, Principles and Methods of Testing and 
Determining of Concrete Durability under the Action of Frost." Final 
Report B5-14. Proc. RILEM International Symp. on Durability of Concrete, 
Building Research Institute, Prague, 1969. 

45. Maclnnis, C. "A One-Cycle Freezing Test for Concrete Durability." 
Preliminary Report B3-16. Proc. RILEM International Symp. on 
Durability of Concrete, Building Research Institute, Prague, 1969. 

46. Maclnnis, C. and J. J. Beaudoin. "Effect of Degree of Saturation on the 
Frost Resistance of Mortar Mixes." Proc. J. of American Concrete Institute, 
65 (March 1968), 203-207. 



www.manaraa.com

1 0 4  

47. Mielenz, R. C. "Pétrographie Examination." Signifîcance of Tests and 
Properties of Concrete and Concrete Making Materials, ASTM, STP 169B 
(1978), 539-572. 

48. Monger, H. H. "The Influence of Durability of Aggregate upon the 
Durability of Resulting Concrete." Proc. ASTM, 42 (1942), 787-803. 

49. Myers, V. J. and N. Dubberice. "Durability of Concrete and the Iowa Pore 
Index Test - Interim Report." Project HR-2022 (July 1981). Iowa 
Department of Transportation, Ames, Iowa. 

50. Neville, A. M. Properties of Concrete. London: Pitman, 1981. 

51. Philleo, R. E. "Freezing and Thawing Resistance of High Strength 
Concrete." Highway Research Board, NCHRP Report 20-5 (Jan. 1986). 

52. Powers, T. C. "A Working Hypothesis for Further Studies of Frost 
Resistance of Concrete." Proc. J. of American Concrete Institute, 41 
(Feb. 1945), 245-272. 

53. Powers, T. C. "Void Spacing as a Basis for Producing Air-Entrained 
Concrete." Proc. J. of American Concrete Institute, 50 (May 1954), 741-760. 

54. Powers, T. C. "The Air Requirement of Frost-Resistant Concrete." Proc. 
Highway Research Board, 29 (1949), 184-211. 

55. Powers, T. C. "The Mechanism of Frost Action in Concrete." Stanton 
Walker Lecture No. 3. National Sand and Gravel Association, Silver 
Spring, Maryland, 1965. 

56. Powers, T. C. "Basic Considerations Pertaining to Freezing and Thawing 
Tests." Proc. ASTM,, 55 (1955), 1132-1154. 

57. Powers, T. C. "Freezing Effects in Concrete." In Durability of Concrete. 
American Concrete Institute, SP 47-1 (1975), 1-12. 

58. Powers, T. C., L. E. Copeland, J. C. Hayes and H. M. Mann. "Permeability of 
Portland Cement Paste." Proc. J. of American Concrete Institute, 51 
(Nov. 1954), 285-298. 

59. Powers, T. C. and R. A. Helmuth. "Theory of Volume Changes in Hardened 
Portland Cement Paste During Freezing." Proc. Highway Research Board, 
32 (1953), 285-297. 



www.manaraa.com

1 0 5  

60. Ritter, H. L. and L. C. Drake. "Pore-Size Distribution in Porous Materials; 
Pressure Porosimeter and Determinations of Complete Macropore-Size 
Distribution." Industry Engineering Chemical Analysis Edition 17 (1945), 
782-786. 

61. Rogers, C. and B. Chojnacki. "Destruction of Concrete Water Tanks in a 
Severe Climate Due to Ice Lensing." In Concrete Durability. Katharine and 
Bryant Mather International Conference, American Concrete Institute, SP 
100-41 (1987), 723-739. 

62. Sawan, J. "Cracking Due to Frost Action in Portland Cement Concrete 
Pavements - A Literature Survey." In Concrete Durability. Katharine and 
Bryant Mather International Conference, American Concrete Institute, SP 
100-44 (1987), 781-803. 

63. SchuIze, W. and H. Lange. "Survey of Test Methods for the Determination 
of the Frost Resistance of Aggregates." Preliminary Report B63-78. Proc. 
RILEM International Symp. on Durability of Concrete, Building Research 
Institute, Prague, 1969. 

64. Schuster, R. L. and J. F. McLaughlin. "A Study of Chert and Shale Gravel 
in Concrete." Highway Research Board, Bull. 305 (1961), 51-75. 

65. Shakoor, A. and C. F. Scholer. "Comparison of Aggregate Pore 
Characteristics as Measured by Mercury Instrusion Porosimeter and Iowa 
Pore Index Tests." J. of American Concrete Institute, 82, No. 4 
(July-Aug. 1985), 453-458. 

66. Sridharan, A., A. G. AltshaeffI and S. Diamond. "Pore Size Distribution 
Studies." J. of Soil Mechanics and Foundation Division, 97, No. SM 5 
(May 1971), 771-787. 

67. Stumip, v., R. Hooton, P. Mukherjee and T. Carmichael. "Evaluation and 
Prediction of Concrete Durability - Ontario Hydro's Experience." In 
Concrete Durability. Katharine and Bryant Mather International 
Conference, American Concrete Institute, SP 100-59 (1987), 1121-1154. 

68. Sweet, H. S. "Research on Concrete Durability as Affected by Coarse 
Aggregate." Proc. ASTM, 48 (1948), 988-1016. 

69. Tremper, B. and D. L. Spellman. "Test for Freeze-Thaw Durability of 
Concrete Aggregates." Highway Research Board, Bull. 305 (1961), 28-50. 



www.manaraa.com

1 0 6  

70. U. S. Bureau of Reclamation. "Investigation Into the Effect of 
Water/Cement Ratio on the Freeze-Thaw Resistance of Non-air and Air-
Entrained Concrete." Concrete Laboratory Report No. C-810 (1955), 
Denver, Colorado. 

71. Valenta, O. "General Analysis of the Methods of Testing the Durability of 
Concrete." Preliminary Report A3-28. Proc. RILEM International Symp. 
on Durability of Concrete, Building Research Institute, Prague, 1969. 

72. Verbeck, G. J. and P. Klieger. "Calorimeter-Strain Apparatus for Study of 
Freezing and Thawing of Concrete." Highway Research Board, Bull. No. 
176 (1958), 9-22. 

73. Verbeck, G. J. and R. Langren. "Influence of Physical Characteristics of 
Aggregates on Frost Resistance of Concrete." Proc. ASTM, 60 (1960), 1063-
1079. 

74. Vuorinen, J. "On Use of Dilation Factor and Degree of Saturation in 
Testing Concrete for Frost Resistance." Nordisk Betong (Stockholm), No. 1 
(1970), 37-64. 

75. Walker, S. and D. L. Bloem. "Performance of Automatic Freezing-and-
Thawing Apparatus for Testing Concrete." Proc. ASTM, 51 (1951), 1120-
1135. 

76. Walker, S. and D. L. Bloem. "Studies of Concrete Containing Entrained 
Air." Proc. J. of American Concrete Institute, 42 (June 1946), 629-639. 

77. Walker, R. D. and T. Hsieh. "Relationship between Aggregates Pore 
Characteristics and Durability of Concrete Exposed to Freezing and 
Thawing." Highway Research Board, No. 226 (1968), 41-49. 

78. Washburn, E. W. "Note on a Method of Determining the Distribution of 
Pore Sizes in a Porous Material." National Academy of Science, Proc. 7 
(1921), 115-116. 

79a. Wheeler, A. "Reaction Rates and Selectivity in Catalyst Pores." Advanced 
Catalysis and Related Subjects, 3 (1951), 249-327. 

79b. Wheeler, A. "Reaction Rates and Selectivity in Catalyst Pores." Advanced 
Catalysis and Related Subjects, 2 (1955), 105-123. 

80. Whiteside, T. M. and H. S. Sweet. "Effect of Mortar Saturation on Concrete 
Freezing and Thawing Tests." Proc. Highway Research Board, 30 
(1950), 204-216. 



www.manaraa.com

1 0 7  

81. Wills, M. H., H. A. Lepper, R. D. Gayner and S. Walker. "Volume Change as a 
Measure of Freezing and Thawing Resistance of Concrete Made with 
Different Aggregates." Proc. ASTM, 63 (1963), 946-965. 

82. Winslow, N. M. and J. J. Shapiro. "An Instrument for the Measurement of 
Pore-Size Distribution by Mercury Penetration." ASTM Bull. TP49 
(Feb. 1959), 39-44. 

83. Wright, P. J. F. and J. M. Gregory. "An Investigation Into Methods of 
Carrying Out Accelerated Freezing and Thawing Tests on Concrete." 
Magazines of Concrete Research, (March 1955), 39-47. 



www.manaraa.com

1 0 8  

APPENDIX A 

ABSOLUTE VOLUME COMPOSITIONS OF MORTAR SAMPLES 

Sample Identification 

Component P43 A43 P50 A50 P60 A60 

Cement 0.194 0.194 0.186 0.186 0.175 0.175 

Water 0.262 0.262 0.293 0.293 0.332 0.332 

Fine aggregate 0.544 0.544 0.521 0.521 0.493 0.493 

"Protex" 0 0.00049 0 0.00047 0 0.00044 

Total 1.000 1.000 1.000 1.000 1.000 1.000 

Water/cement ratio 0.43 0.43 0.50 0.50 0.60 0.60 

by weight 



www.manaraa.com

1 0 9  

APPENDIX B 

CONCRETE PROPERTIES AND MK DESIGN 

Slump 
(in) 

Air 
content 

( % )  

Compressive 
28-day 

(psi) 

strength 
90-day 

Alden agg. 

Plain 3 2.5 5290 7970 

Air-entrained 4 6.5 4290 5420 

Garrison agg. 

Plain 3 2.5 6180 7580 

Air-entrained 4 6 4780 5930 

Lamont agg. 

Plain 3 2.5 6420 6540 

Air-entrained 3 6.8 4600 5990 

IDOT C-3 Mix Proportion 

Basic Absolute Volumes of Materials per Unit Volume of Concrete 

Cement Water Entrained Fine Coarse 
air aggregate aggregate 

0.114172 0.153840 0.06 0.301895 0.370093 



www.manaraa.com

1 1 0  

APPENDIX C 

DERIVATION OF THE RELATIONSHIP BETWEEN THE RATE OF SATURATION OF 

CONCRETE AS A FUNCnON OF THE RATE OF SATURATION OF AGGREGATE AND 

MORTAR COMPONENTS 

concrete 

Pore volume Vc 

Volume fractions 

Water content at time, t wc 

% Saturation at time, t 

Wc = vmWm + vgWa 

Xc = (Wc/Vc) X 100 

Xm = (Wm/Vm) x 100 

Xa = (Wa/Va) * lOO 

XcVc= vmXmVm + vgXaVa 

Xc = l/Vc(VniVmXin + vaVaXa) 

mortar 

Vm 

Vm 

Wm 

Xm 

(assumption) 

aggregate 

Va 

Va 

wa 

Xa 
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Theoretical prediction of the rate of saturation of concrete with Alden 
aggregate as a function of the rate of saturation of mortar and aggregate 
components 
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APPENDIX D 

TYPICAL DILATOMETRIC EXPANSION VERSUS TEMPERATURE PLOTS AT -20 °C 
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APPENDIX E 

PORE SIZE DISTRIBUTION OF MORTAR AND AGGREGATE SAMPLES 
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APPENDIX F 

SELECTING REPRESENTATIVE SAMPLES 

Obviously, the smaller size of samples used in the experiments is not 

considered representative of actual fîeld concrete. Although this drawback 

cannot be completely eliminated, this research suggests selecting 

representative samples from about 12 cores by finding the "average" samples 

based on porosity measurement. The following presents an example on how 

average samples can be selected. 

A total of 12 core samples were prepared. Their dry densities were 

determined. The average dry density and standard deviation was also 

calculated. Samples with dry density within one standard deviation are 

considered acceptable. In the example shown below, all samples are 

considered acceptable except sample number 8. 

Sample number Dry density (g/cm^) 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

2.25 
2.27 
2.27 
2.27 
2.25 
2.24 
2.26 
2.23 
2.25 
2.26 
2.27 
2.27 

Average density = 2.257 
Standard deviation = 0.013 
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